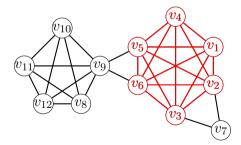
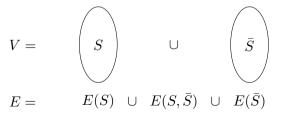
Deconstruct Densest Subgraphs

Lijun Chang

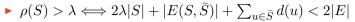
Joint work with Miao Qiao (The University of Aukland)

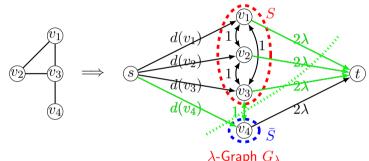

April 23, 2020

Densest Subgraph


- Given an unweighted and undirected graph G = (V, E), the densest subgraph problem aims to find the subgraph with the largest average degree.
 - Communities in social networks
 - Expert teams in co-authorship graphs
 - Spam links in web graphs

State of the Art: Goldberg's Algorithm¹


- \blacktriangleright Use vertex subset S to denote node-induced subgraph
- ▶ Use \bar{S} to denote $V \backslash S$


► Let
$$\rho(S)$$
 be the density of S : $\frac{|E(S)|}{|S|}$
► $\rho(S) > \lambda \iff 2|E| > 2\lambda|S| + |E(S,\bar{S})| + \sum_{u \in \bar{S}} d(u)$
 $- 2|E| = 2|E(S)| + |E(S,\bar{S})| + |E(S,\bar{S})| + 2|E(\bar{S})|$
 $- 2|E| = 2|E(S)| + |E(S,\bar{S})| + \sum_{u \in \bar{S}} d(u)$
 $- \rho(S) > \lambda \iff 2|E(S)| > 2\lambda|S|$

¹A. V. Goldberg. Finding a Maximum Density Subgraph. Tech. rep. Berkeley, CA, USA, 1984.

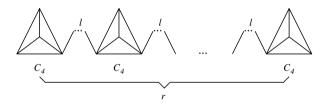
State of the Art: Goldberg's Algorithm²

- ▶ The maximum density is larger than λ iff the minimum cut of G_{λ} has a value smaller than 2|E|
- **•** Conduct binary search on λ to find the densest subgraph

²A. V. Goldberg. Finding a Maximum Density Subgraph. Tech. rep. Berkeley, CA, USA, 1984.

Motivation: Deconstruct Densest Subgraphs

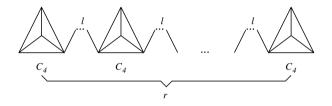
- Goldberg's algorithm identifies the maximal densest subgraph
- ▶ Most of the existing studies only care about maximal densest subgraphs, *e.g.*, they have been used in
 - Locally densest subgraph discovery³
 - Density-friendly graph decomposition⁴
- One exception: minimal densest subgraph is used in finding k subgraphs with maximum total density and limited overlap⁵
 - However, finding one minimal densest subgraph triggers $\mathcal{O}(n\log n)$ instances of finding a densest subgraph
- ▶ Moreover, the relationship among all densest subgraphs in a graph is unclear.


³L. Qin et al. "Locally Densest Subgraph Discovery". In: Proc. of KDD'15. 2015.

⁴M. Danisch, T.-H. H. Chan, and M. Sozio. "Large Scale Density-friendly Graph Decomposition via Convex Programming". In: *Proc. of WWW'17.* 2017.

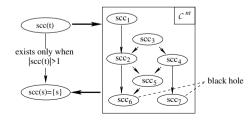
⁵O. D. Balalau et al. "Finding Subgraphs with Maximum Total Density and Limited Overlap". In: Proc. of WSDM'15. 2015.

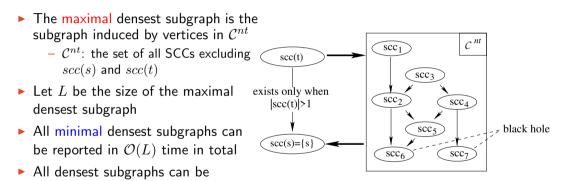
Fact 1: Number of Densest Subgraphs can be Exponential


- Let's consider the following graph
 - It contains r 4-cliques C_4
 - Each pair of consecutive 4-cliques is connected by a path with l intermediate nodes

 $\blacktriangleright \ {\rm For} \ l>2$

- Each 4-clique is a minimal densest subgraph
- Each densest subgraph is a union of a subset of the 4-cliques
- There are $2^r 1$ densest subgraphs in total


Fact 2: Densest Subgraph is NOT simply Union of Minimal Densest Subgraphs


- $\blacktriangleright \ {\rm For} \ l=2$
 - Minimal densest subgraphs are still the 4-cliques
 - A union of a subset of 4-cliques is still a densest subgraph
 - But now, densest subgraphs have more shapes
 - E.g., the union of the first two 4-cliques and the path that connects these two 4-cliques is a densest subgraph

Deconstruct Densest Subgraphs

- ► The key to the structure of all densest subgraphs of G is hidden in the λ -graph with $\lambda = \rho^*(G)$ (the maximum density of G)
 - **1**. Given G
 - 2. Compute $\lambda^* = \rho^*(G)$ by using Goldberg's algorithm
 - 3. Construct G_{λ^*}
 - 4. Run maximum-flow algorithm on G_{λ^*} , let \mathcal{H}_{f^*} be the resulting residual graph which is a weighted directed graph
 - 5. Contract each strongly connected component (SCC) into a super-node, call the resulting graph critical component graph \mathcal{H}^C

Deconstruct Densest Subgraphs

enumerated with a delay of $\mathcal{O}(L)$

The critical component graph \mathcal{H}^C

Scale the Computation in Practice

- ▶ The time complexity of Goldberg's algorithm is $O(n \cdot m \cdot \log \frac{n^2}{m})$ by using parametric maximum flow⁶
 - This is the bottleneck of deconstructing densest subgraphs
- ▶ To scale the computation to large graphs, we first reduce the graph instance
 - All vertices whose degrees are smaller than $\rho^\ast(G)$ can be removed

Let S^* be the maximal densest subgraph of G, then the minimum degree of S^* is no smaller than $\rho^*(G)$, *i.e.*, $d_{min}(S^*) \ge \rho^*(G)$

- \blacktriangleright Use a lower bound of $\rho^*(G),$ obtained by the linear-time 2-approximation algorithm^7, for pruning
 - Iteratively remove from the graph the minimum-degree vertex
 - The densest one among the n subgraphs provides a 2-approximation result

⁶G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. "A Fast Parametric Maximum Flow Algorithm and Applications". In: SIAM J. of Comp. 18.1 (1989).

⁷M. Charikar. "Greedy approximation algorithms for finding dense components in a graph". In: *Proc. of APPROX'00.* 2000.

Experimental Setting

- ▶ Machine: 3.4GHz CPU, 16GB main memory
- ▶ All algorithms are implemented in C++ and run in single-thread mode
- Report the overall running time, excluding only the I/O time

Graph Statistics and Reduced Graph Sizes

$Graph\ G$	V(G)	E(G)	$\rho^*(G)$	$\lceil \widetilde{ ho} \rceil$	Reduced graph G^-		
					$ V(G^-) $	$ E(G^-) $	$\frac{ E(G^-) }{ E(G) }$
dblp	317,080	1,049,866	56.57	57	280	13,609	1.30%
web-Stanford	281,903	1,992,636	59.39	60	1,370	78,797	3.95%
com-youtube	1,134,890	2,987,624	45.60	46	2,269	103,342	3.46%
web-Google	875,713	4,322,051	28.04	28	787	16,641	0.39%
WikiTalk	2,388,953	4,656,682	114.14	115	1,384	157,968	3.39%
youtube-growth	3,223,585	9,375,374	77.47	78	1,219	94,427	1.01%
as-skitter	1,694,616	11,094,209	89.40	90	915	73,480	0.66%
soc-flickr-und	1,715,255	15,555,041	468.83	469	3,135	1,469,797	9.45%
patent	3,774,768	16,518,947	40.13	41	730	25,697	0.16%
soc-pokec	1,632,803	22,301,964	41.13	42	8,974	368,613	1.65%
LiveJournal	4,843,953	42,845,684	229.85	228	3,639	661,891	1.54%
twitter-mpi	9,862,152	99,940,317	602.44	603	8,448	5,089,428	5.09%
tech-p2p	5,792,297	147,829,887	750.18	751	7,641	5,732,158	3.88%
uk-2002	18,459,128	261,556,721	471.50	472	3,429	1,231,751	0.47%
uk-2005	39,252,879	781,439,892	485.75	429	51,784	15,037,470	1.92%
webbase	115,554,441	854,809,761	816.92	804	9,990	6,631,895	0.78%
it-2004	41,290,577	1,027,474,895	2008.19	2,009	4,279	8,593,024	0.84%
twitter-2010	41,652,230	1,202,513,046	1643.30	1,644	11,619	17,996,107	1.50%

Time for Computing All Minimal Densest Subgraphs

$Graph\ G$	V(G)	E(G)	Processing time (seconds)		
Graph G		L(G)	Reduction	Flow	Total
dblp	317,080	1,049,866	0.049	0.021	0.07
web-Stanford	281,903	1,992,636	0.083	0.15	0.233
com-youtube	1,134,890	2,987,624	0.193	0.807	1
web-Google	875,713	4,322,051	0.336	0.11	0.446
WikiTalk	2,388,953	4,656,682	0.195	0.935	1.13
youtube-growth	3,223,585	9,375,374	0.982	0.768	1.75
as-skitter	1,694,616	11,094,209	0.644	0.286	0.93
soc-flickr-und	1,715,255	15,555,041	0.566	19.434	20
patent	3,774,768	16,518,947	2.88	0.6	3.48
soc-pokec	1,632,803	22,301,964	1.87	6.53	8.4
LiveJournal	4,843,953	42,845,684	4.65	1.72	6.37
twitter-mpi	9,862,152	99,940,317	5.36	164.64	170
tech-p2p	5,792,297	147,829,887	19	283	302
uk-2002	18,459,128	261,556,721	9.6	2.4	12
uk-2005	39,252,879	781,439,892	26	77	103
webbase	115,554,441	854,809,761	61	36	97
it-2004	41,290,577	1,027,474,895	30	53	83
twitter-2010	41,652,230	1,202,513,046	143	320	463

Plugin Our Algorithm for Top-k Densest Subgraph Computation⁸

$Graph\ G$	TopkDS (seconds)	The existing algorithm		
dblp	0.635			
web-Stanford	1.9	0.3 hours		
com-youtube	5.1	0.54 hours		
web-Google	6.2	2.15 hours		
WikiTalk	4.5			
youtube-growth	18	1.5 hours		
as-skitter	12	1.29 hours		
soc-flickr-und	80			
patent	35			
soc-pokec	480			
LiveJournal	67			
twitter-mpi	624			
tech-p2p	1,671			
uk-2002	142			
uk-2005	515			
webbase	813			
it-2004	1,523			
twitter-2010	10,205			

Conclusions

- ▶ We studied the relationship among all densest subgraphs of a graph
- ▶ By conducting a precomputation of $O(n \cdot m \cdot \log \frac{n^2}{m})$, the same as the time complexity of Goldberg's algorithm
 - All minimal densest subgraphs can be reported in $\mathcal{O}(L)$ time in total
 - All densest subgraphs can be enumerated with a delay of $\mathcal{O}(L)$
 - *L* is the size of the maximal densest subgraph
- The source code of our algorithm will be available at https: //github.com/LijunChang/Cohesive_subgraph_book/densest_subgraph