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Introduction

Given a graph ! = ($, &), a vertex subset ( ⊆ $ is an independent 
set if for any two vertices * and + in (, there is no edge between *
and + in !.

Independent Set

An independent set	(	of ! is a maximum independent set if its size 
is the largest among all independent sets of !.

Maximum Independent Set
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Introduction

Applications
v Build index for shortest path/distance queries [Cheng et al. 

SIGMOD’12, Fu et al. VLDB’13]
v Refine the result of matching two graphs [Zhu et al. VLDB J’13]
v Social network coverage [Puthal et al. BigData’15]; vertex 

cover

Hardness
v NP-hard to compute a maximum independent set [Garey et al. 

Book’79]
v Hard to approximate

§ NP-hard to approximate within a factor of -./0 for any 0 <
3 < 1 [J. Håstad. FOCS’96]
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Existing Works
Exact algorithms -- branch-and-reduce paradigm

v [F. V. Fomin et al .J.ACM’09] 
§ Theoretically runs in 5∗ 1.22019 time

v [T. Akiba et al. Theor. Comput. Sci.’16]
§ Practically computes the exact solution for many small and 

medium-sized graphs

Approximation algorithms
v [U. Feige J. Discrete Math’04, M. M. Halldórsson et al. 

Algorithmica’97, P. Berman. Theor.Comput. Sys.’99]
§ Approximation ratio largely depends on n or Δ
§ Not practically useful



Existing Works

Heuristic algorithms for large graphs
v Linear-time algorithms

§ Greedy, dynamic update
§ Efficient, but can only find small independent sets in 

practice
v Iterative randomized searching

§ Local search algorithm: ARW [D. V. Andrade. 
J.Heuristics’12]

§ Evolutionary algorithm: ReduMIS [S. Lamm. ALENEX’16]
§ Local search + simple reduction rules: OnlineMIS [J. 

Dahlum. SEA’16]
§ Can find large independent sets, but take long time

Our goal: find large independent sets in a time-efficient
and space-effective manner
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Three Observations Utilized in Our Framework
v Observation–I: Real networks are usually power-law graphs with 

many low-degree vertices

v Observation-II: Reduction rules have been effectively used for low-
degree vertices

v Observation-III: High-degree vertices are less likely to be in a 
maximum independent set
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Three Observations Utilized in Our Framework
v Observation–I: Real networks are usually power-law graphs with 

many low-degree vertices

v Observation-II: Reduction rules have been effectively used for 
low-degree vertices

(b) Isolation D ! = D !\ +, F
(c) Folding D ! = D !/ *, +, F + 1

v Observation-III: High-degree vertices are less likely to be in a 
maximum independent set

(a) D ! = D !\ +

Degree-one Reduction

Degree-two Reductions
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Three Observations Utilized in Our Framework
v Observation–I: Real networks are usually power-law graphs with 

many low-degree vertices

v Observation-II: Reduction rules have been effectively used for low-
degree vertices

v Observation-III: High-degree vertices are less likely to be in a 
maximum independent set

Ø If a high-degree vertex is added into the independent set, then 
all its neighbors, which are of a large quantity, are ruled out 
from the independent set [J. Dahlum et al SEA’16]

Ø Removing/peeling high-degree vertices can further sparsify the 
graph [Y. Lim et al TKDE’14]



The Reducing-Peeling Framework
Definition 3.1: (Inexact Reduction) Given a graph !, we 
remove/peel the vertex with the highest degree from !.

v Phase 1: Reducing
Ø While a reduction rule can be applied on a vertex * then

Apply the exact reduction rule on *

v Phase 2: Peeling
Ø Apply the inexact reduction rule to temporarily remove a high-

degree vertex

v Repeat the above two phases until there is no edge in the graph

v Post-process: Iteratively add a temporarily removed vertex to the 
solution if the independence requirement is not violated
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Overview of Our Approaches

v Compute large independent set for large graphs in a 
time-efficient and space-effective manner
§ Subquadratic (or even linear) time.
§ 2m + O(n) space: m is the number of undirected edges.

§ A graph is stored in 2m + n + O(1) space by the adjacency 
array (aka, Compressed Sparse Row) graph representation

§ A graph with one billion edges takes slightly more than 8GB
memory



An Efficient Baseline Algorithm
v BDOne

Step 1:
While $T. ≠ ∅ or $WX ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily 

removed vertices

=>? YB = B
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An Efficient Baseline Algorithm
v BDOne =>? YB = B
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Complexity Analysis
Time: 5 O
Space: 2O + 5 -
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Step 2:
Recover temporarily 
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An Effective Baseline Algorithm
v BDTwo

Step 1:
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An Effective Baseline Algorithm
v BDTwo =>? YB = B

=>? Ya = b

Complexity Analysis
Time: 5 -×O 	and	g O + -hRi-
Space: 6O + 5 -

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwo-Reduction

Else
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Step 2:
Recover temporarily removed 

vertices



An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two.  For a maximal degree-two path 
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected 
to +. and +m, respectively.

Case 1: + = F

⟹ D ! = D !\ +
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An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two.  For a maximal degree-two path 
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected 
to +. and +m, respectively.
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= D !\ +X, … , +m ⋃ +., F +
k − 1
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An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two.  For a maximal degree-two path 
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected 
to +. and +m, respectively.
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An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two.  For a maximal degree-two path 
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected 
to +. and +m, respectively.

Case 5: k is even and 
+, F ∉ &

⟹ D !
= D !\ +., … , +m ⋃ +, F

+
k

2
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A Near-Linear-Time Algorithm
v NearLinear

Lemma 5.1: (Dominance Reduction) [F. V. Fomin et al. JACM’09]
Vertex v dominates vertex u if +, * ∈ & and all neighbors of v other 
than u are also connected to u (i.e., s + \ * ⊆ s * ). If v dominates 
u, then there exists a maximum independent set of G the excludes u; 
thus, we can remove u from G, and D ! = D !\ * .

Lemma 5.2: Vertex v dominates its neighbor u iff ∆ +, * = K + − 1, 
where ∆ +, * 	is the number of triangles containing u and v



A Near-Linear-Time Algorithm
v NearLinear
Step1: Maintain the set u of candidate 
dominated vertices, and also maintain ∆ +, *
for every edge +, *

Step 2:
While $TX ≠ ∅ or u ≠ ∅ or $W` ≠ ∅

If $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else if u ≠ ∅	then
dominance reduction

Else
Inexact-Reduction

Step 2: Recover temporarily removed vertices

Complexity Analysis
Time: 5 O×Δ
(Δ is the maximum degree 
in !)

Space: 4O + 5 - in worst 
case and 2O + 5 - in 
practice



Extensions of Our Algorithms

v Accelerate ARW

v Compute Upper Bound of D !
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Experimental Settings
v Datasets

v Environments
Ø All algorithms are 

implemented in C++
Ø All experiments are 

conducted on a 
machine with an Intel(R) 
Xeon(R) 3.4GHz CPU 
and 16GB main 
memory running Linux



Accuracy

v Gap to the maximum independent set size



Processing Time

(a) Compared 
with 
Existing
Techniques

(b) Compare 
Our 
Techniques



Memory Usage
(a) Compared 

with 
Existing
Techniques

(b) Compare 
Our 
Techniques



Boost ARW

ARW-NL, ARW-LT: ARW boosted by NearLinear and LinearTime, respectively.

Convergence plots of local search algorithms
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Conclusion

p A new Reducing-Peeling framework

p Time-efficient and space-effective techniques to implement the 
reducing-peeling framework

p Find large independent sets efficiently for large real-world 
graphs with billions of edges




