Computing A Near-Maximum Independent Set in Linear Time by Reducing-Peeling

Lijun Chang

University of New South Wales, Australia
Lijun.Chang@unsw.edu.au

Joint work with Wei Li, Wenjie Zhang
Outline

- Introduction
- Existing Works
- Our Reducing-Peeling Framework
- Our Approaches
- Experimental Studies
- Conclusion
Introduction

Independent Set
Given a graph $G = (V, E)$, a vertex subset $I \subseteq V$ is an independent set if for any two vertices u and v in I, there is no edge between u and v in G.

Maximum Independent Set
An independent set I of G is a maximum independent set if its size is the largest among all independent sets of G.
Introduction

Independent Set
Given a graph \(G = (V, E) \), a vertex subset \(I \subseteq V \) is an independent set if for any two vertices \(u \) and \(v \) in \(I \), there is no edge between \(u \) and \(v \) in \(G \).

Maximum Independent Set
An independent set \(I \) of \(G \) is a maximum independent set if its size is the largest among all independent sets of \(G \).
Introduction

Independent Set

Given a graph $G = (V, E)$, a vertex subset $I \subseteq V$ is an independent set if for any two vertices u and v in I, there is no edge between u and v in G.

Maximum Independent Set

An independent set I of G is a maximum independent set if its size is the largest among all independent sets of G.
Introduction

Applications
- Build index for shortest path/distance queries [Cheng et al. *SIGMOD’12*, Fu et al. *VLDB’13]*
- Refine the result of matching two graphs [Zhu et al. *VLDB J’13]*
- Social network coverage [Puthal et al. *BigData’15*]; vertex cover

Hardness
- NP-hard to compute a maximum independent set [Garey et al. *Book’79]*
- Hard to approximate
 - NP-hard to approximate within a factor of $n^{1-\varepsilon}$ for any $0 < \varepsilon < 1$ [J. Håstad. *FOCS’96]*
Outline

- Introduction
- Existing Works
- Our Reducing-Peeling Framework
- Our Approaches
- Experimental Studies
- Conclusion
Existing Works

Exact algorithms -- \textit{branch-and-reduce paradigm}

- [F. V. Fomin et al. \textit{J.ACM’09}]
 - Theoretically runs in $O^*(1.2201^n)$ time
 - Practically computes the exact solution for many small and medium-sized graphs

Approximation algorithms

 - Approximation ratio largely depends on n or Δ
 - Not practically useful
Existing Works

Heuristic algorithms for large graphs
- Linear-time algorithms
 - Greedy, dynamic update
 - Efficient, but can only find small independent sets in practice
- Iterative randomized searching
 - Evolutionary algorithm: ReduMIS [S. Lamm. *ALENEX*’16]
 - Local search + simple reduction rules: OnlineMIS [J. Dahlum. *SEA*’16]
 - Can find large independent sets, but take long time

Our goal: find large independent sets in a time-efficient and space-effective manner
Outline

- Introduction
- Existing Works
- Our Reducing-Peeling Framework
- Our Approaches
- Experimental Studies
- Conclusion
Three Observations Utilized in Our Framework

- **Observation–I**: Real networks are usually power-law graphs with many low-degree vertices
 \[
 Pr(deg = k) \propto \frac{1}{k^\beta}
 \]

- **Observation–II**: Reduction rules have been effectively used for low-degree vertices

- **Observation–III**: High-degree vertices are less likely to be in a maximum independent set
Three Observations Utilized in Our Framework

- **Observation–I:** Real networks are usually power-law graphs with many low-degree vertices

- **Observation-II:** Reduction rules have been effectively used for low-degree vertices

 Degree-one Reduction

 (a) \(\alpha(G) = \alpha(G\setminus \{v\}) \)

 \(\alpha(G) \): independence number of \(G \)

 Degree-two Reductions

 (b) Isolation \(\alpha(G) = \alpha(G\setminus \{v, w\}) \)

 (c) Folding \(\alpha(G) = \alpha(G/\{u, v, w\}) + 1 \)

- **Observation-III:** High-degree vertices are less likely to be in a maximum independent set
Three Observations Utilized in Our Framework

- **Observation–I**: Real networks are usually power-law graphs with many low-degree vertices

- **Observation-II**: Reduction rules have been effectively used for low-degree vertices

- **Observation-III**: High-degree vertices are less likely to be in a maximum independent set

 - If a high-degree vertex is added into the independent set, then all its neighbors, which are of a large quantity, are ruled out from the independent set [J. Dahlum et al SEA’16]

 - Removing/peeling high-degree vertices can further sparsify the graph [Y. Lim et al TKDE’14]
The Reducing-Peeling Framework

Definition 3.1: (Inexact Reduction) Given a graph \(G \), we remove/peel the vertex with the highest degree from \(G \).

- **Phase 1: Reducing**
 - **While** a reduction rule can be applied on a vertex \(u \) **then**
 - Apply the exact reduction rule on \(u \)

- **Phase 2: Peeling**
 - Apply the inexact reduction rule to temporarily remove a high-degree vertex

- Repeat the above two phases until there is no edge in the graph

- Post-process: Iteratively add a temporarily removed vertex to the solution if the independence requirement is not violated
Outline

- Introduction
- Existing Works
- Our Reducing-Peeling Framework
- Our Approaches
- Experimental Studies
- Conclusion
Overview of Our Approaches

- Compute large independent set for large graphs in a time-efficient and space-effective manner
 - Subquadratic (or even linear) time.
 - $2m + O(n)$ space: m is the number of undirected edges.
 - A graph is stored in $2m + n + O(1)$ space by the adjacency array (aka, Compressed Sparse Sparse Row) graph representation
 - A graph with one billion edges takes slightly more than 8GB memory

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Complexity</th>
<th>Space Complexity</th>
<th>Exact Reduction Rules Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDOne</td>
<td>$O(m)$</td>
<td>$2m + O(n)$</td>
<td>Degree-one reduction [21]</td>
</tr>
<tr>
<td>BDTwo</td>
<td>$O(n \times m)$</td>
<td>$6m + O(n)$</td>
<td>Degree-one reduction [21] & Degree-two vertex reductions [21]</td>
</tr>
<tr>
<td>LinearTime</td>
<td>$O(m)$</td>
<td>$2m + O(n)$</td>
<td>Degree-one reduction [21] & Degree-two path reduction (this paper)</td>
</tr>
<tr>
<td>NearLinear</td>
<td>$O(m \times \Delta)$</td>
<td>$4m + O(n)$</td>
<td>Dominance reduction [21] & Degree-two path reduction (this paper)</td>
</tr>
</tbody>
</table>

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, Δ: maximum vertex degree)
An Efficient Baseline Algorithm

BDOne

Step 1:
While $V_{=1} \neq \emptyset$ or $V_{\geq 2} \neq \emptyset$
If $V_{=1} \neq \emptyset$ then
 DegreeOne-Reduction
Else
 Inexact-Reduction

Step 2:
Recover temporarily removed vertices

deg(v₁) = 1
An Efficient Baseline Algorithm

- **BDOne**

Step 1:
- **While** \(V_{=1} \neq \emptyset \) or \(V_{\geq 2} \neq \emptyset \)
 - **If** \(V_{=1} \neq \emptyset \) then
 - *DegreeOne-Reduction*
 - **Else**
 - *Inexact-Reduction*

Step 2:
- Recover temporarily removed vertices

![Diagram](image.png)

- \(\deg(v_1) = 1 \)
- \(v_6 \) is with the highest degree
An Efficient Baseline Algorithm

- **BDOne**

 Step 1:
 \[\text{While } V_{\geq 1} \neq \emptyset \text{ or } V_{\geq 2} \neq \emptyset \]

 If \(V_{\geq 1} \neq \emptyset \) then
 \[\text{DegreeOne-Reduction} \]

 Else
 \[\text{Inexact-Reduction} \]

 Step 2:
 Recover temporarily removed vertices

- \(\text{deg}(v_1) = 1 \)

- \(v_6 \) is with the highest degree
An Efficient Baseline Algorithm

- **BDOne**

Step 1:

While $V_{=1} \neq \emptyset$ or $V_{\geq 2} \neq \emptyset$

If $V_{=1} \neq \emptyset$ then
DegreeOne-Reduction

Else
Inexact-Reduction

Step 2:

Recover temporarily removed vertices
An Efficient Baseline Algorithm

- **BDOne**

 Step 1:

 While $V_{\geq 1} \neq \emptyset$ or $V_{\geq 2} \neq \emptyset$

 If $V_{\geq 1} \neq \emptyset$ **then**

 DegreeOne-Reduction

 Else

 Inexact-Reduction

 Step 2:

 Recover temporarily removed vertices

Complexity Analysis

- **Time:** $O(m)$
- **Space:** $2m + O(n)$

* v$_6$ is with highest degree

 $deg(v_1) = 1$
An Effective Baseline Algorithm

- **BDTwo**

Step 1:

While $V_{=1} \neq \emptyset$ or $V_{=2} \neq \emptyset$ or $V_{=3} \neq \emptyset$

- If $V_{=1} \neq \emptyset$ then
 - **DegreeOne-Reduction**

- Else if $V_{=2} \neq \emptyset$ then
 - **DegreeTwo-Reduction**

- Else
 - **Inexact-Reduction**

Step 2:

Recover temporarily removed vertices

![Diagram](image.png)

$\text{deg}(v_1) = 1$
An Effective Baseline Algorithm

BDTwo

Step 1:
While $V_{=1} \neq \emptyset$ or $V_{=2} \neq \emptyset$ or $V_{=3} \neq \emptyset$
 If $V_{=1} \neq \emptyset$ then
 DegreeOne-Reduction
 Else if $V_{=2} \neq \emptyset$ then
 DegreeTwo-Reduction
 Else
 Inexact-Reduction

Step 2:
Recover temporarily removed vertices

deg(v_1) = 1

deg(v_3) = 2
An Effective Baseline Algorithm

- **BDTwo**

Step 1:
While $V_{=1} \neq \emptyset$ or $V_{=2} \neq \emptyset$ or $V_{\geq 3} \neq \emptyset$
 If $V_{=1} \neq \emptyset$ then
 DegreeOne-Reduction
 Else if $V_{=2} \neq \emptyset$ then
 DegreeTwo-Reduction
 Else
 Inexact-Reduction

Step 2:
Recover temporarily removed vertices

Complexity Analysis

Time: $O(n \times m)$ and $\Omega(m + n \log n)$
Space: $6m + O(n)$
An Effective Linear-Time Algorithm

- LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph $G = (V, E)$ with minimum degree two. For a maximal degree-two path $P = \{v_1, v_2, ..., v_l\}$, let $v \notin P$ and $w \notin P$ be the unique vertices connected to v_1 and v_l, respectively.

Case 1: $v = w$

$\Rightarrow \alpha(G) = \alpha(G \setminus \{v\})$
Lemma 4.1: (Degree-two Path Reductions) Consider a graph $G = (V, E)$ with minimum degree two. For a maximal degree-two path $P = \{v_1, v_2, ..., v_l\}$, let $v \notin P$ and $w \notin P$ be the unique vertices connected to v_1 and v_l, respectively.

Case 2: $|P|$ is odd and $(v, w) \in E$

$$\Rightarrow \alpha(G) = \alpha(G\{v, w\})$$
An Effective Linear-Time Algorithm

- **LinearTime**

Lemma 4.1: (Degree-two Path Reductions) Consider a graph $G = (V, E)$ with minimum degree two. For a maximal degree-two path $P = \{v_1, v_2, ..., v_l\}$, let $v \not\in P$ and $w \not\in P$ be the unique vertices connected to v_1 and v_l, respectively.

Case 3: $|P|$ is odd and $(v, w) \not\in E$

$$\Rightarrow \alpha(G) = \alpha(G\{v_2, ..., v_l\} \cup \{(v_1, w)\}) + \frac{|P| - 1}{2}$$
Lemma 4.1: (Degree-two Path Reductions) Consider a graph $G = (V, E)$ with minimum degree two. For a maximal degree-two path $P = \{v_1, v_2, \ldots, v_l\}$, let $v \not\in P$ and $w \not\in P$ be the unique vertices connected to v_1 and v_l, respectively.

Case 4: $|P|$ is even and $(v, w) \in E$

$$\Rightarrow \alpha(G) = \alpha(G\{v_1, \ldots, v_l\}) + \frac{|P|}{2}$$
An Effective Linear-Time Algorithm

LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph $G = (V, E)$ with minimum degree two. For a maximal degree-two path $P = \{v_1, v_2, ..., v_l\}$, let $v \notin P$ and $w \notin P$ be the unique vertices connected to v_1 and v_l, respectively.

Case 5: $|P|$ is even and $(v, w) \notin E$

$$\Rightarrow \alpha(G) = \alpha(G \setminus \{v_1, ..., v_l\} \cup \{(v, w)\}) + \frac{|P|}{2}$$

(a) \hspace{1cm} (b) \hspace{1cm} (c) \hspace{1cm} (d) \hspace{1cm} (e)
An Effective Linear-Time Algorithm

- **LinearTime**

 Step 1:
 While $V_{\geq 1} \neq \emptyset$ or $V_{\geq 2} \neq \emptyset$ or $V_{\geq 3} \neq \emptyset$

 If $V_{\geq 1} \neq \emptyset$ then
 - *DegreeOne-Reduction*

 Else if $V_{\geq 2} \neq \emptyset$ then
 - *DegreeTwoPath-Reduction*

 Else
 - *Inexact-Reduction*

 Step 2: Recover temporarily removed vertices
An Effective Linear-Time Algorithm

- **LinearTime**

Step 1:

While \(V_{\leq 1} \neq \emptyset \) or \(V_{\leq 2} \neq \emptyset \) or \(V_{\geq 3} \neq \emptyset \)

- If \(V_{\leq 1} \neq \emptyset \) then
 - DegreeOne-Reduction
- Else if \(V_{\leq 2} \neq \emptyset \) then
 - DegreeTwoPath-Reduction
- Else
 - Inexact-Reduction

Step 2: Recover temporarily removed vertices
An Effective Linear-Time Algorithm

- **LinearTime**

Step 1:
While $V_{=1} \neq \emptyset$ or $V_{=2} \neq \emptyset$ or $V_{\geq 3} \neq \emptyset$

 If $V_{=1} \neq \emptyset$ then
 - DegreeOne-Reduction

 Else if $V_{=2} \neq \emptyset$ then
 - DegreeTwoPath-Reduction

 Else
 - Inexact-Reduction

Step 2: Recover temporarily removed vertices
An Effective Linear-Time Algorithm

- **LinearTime**

Step 1:
While $V_{=1} \neq \emptyset$ or $V_{=2} \neq \emptyset$ or $V_{\geq 3} \neq \emptyset$
 If $V_{=1} \neq \emptyset$ then
 DegreeOne-Reduction
 Else if $V_{=2} \neq \emptyset$ then
 DegreeTwoPath-Reduction
 Else
 Inexact-Reduction

Step 2: Recover temporarily removed vertices
An Effective Linear-Time Algorithm

- LinearTime

Step 1:
While $V_{=1} \neq \emptyset$ or $V_{=2} \neq \emptyset$ or $V_{\geq 3} \neq \emptyset$
 If $V_{=1} \neq \emptyset$ then
 DegreeOne-Reduction
 Else if $V_{=2} \neq \emptyset$ then
 DegreeTwoPath-Reduction
 Else
 Inexact-Reduction

Step 2: Recover temporarily removed vertices
An Effective Linear-Time Algorithm

- **LinearTime**

Step 1:
While $V_{=1} \neq \emptyset$ or $V_{=2} \neq \emptyset$ or $V_{\geq 3} \neq \emptyset$
 - If $V_{=1} \neq \emptyset$ then
 - DegreeOne-Reduction
 - Else if $V_{=2} \neq \emptyset$ then
 - DegreeTwoPath-Reduction
 - Else
 - Inexact-Reduction

Step 2: Recover temporarily removed vertices

Complexity Analysis
- Time: $O(m)$
- Space: $2m + O(n)$
A Near-Linear-Time Algorithm

NearLinear

Lemma 5.1: (Dominance Reduction) [F. V. Fomin et al. JACM’09]
Vertex \(v \) dominates vertex \(u \) if \((v, u) \in E \) and all neighbors of \(v \) other than \(u \) are also connected to \(u \) (i.e., \(N(v) \backslash \{u\} \subseteq N(u) \)). If \(v \) dominates \(u \), then there exists a maximum independent set of \(G \) that excludes \(u \); thus, we can remove \(u \) from \(G \), and \(\alpha(G) = \alpha(G \backslash \{u\}) \).

Lemma 5.2: Vertex \(v \) dominates its neighbor \(u \) iff \(\Delta(v, u) = d(v) - 1 \), where \(\Delta(v, u) \) is the number of triangles containing \(u \) and \(v \)
A Near-Linear-Time Algorithm

NearLinear

Step 1: Maintain the set D of candidate dominated vertices, and also maintain $\Delta(v, u)$ for every edge (v, u)

Step 2:

While $V_{=2} \neq \emptyset$ or $D \neq \emptyset$ or $V_{\geq 3} \neq \emptyset$

If $V_{=2} \neq \emptyset$ then

DegreeTwoPath-Reduction

Else if $D \neq \emptyset$ then

dominance reduction

Else

Inexact-Reduction

Step 2: Recover temporarily removed vertices

Complexity Analysis

Time: $O(m \times \Delta)$
(Δ is the maximum degree in G)

Space: $4m + O(n)$ in worst case and $2m + O(n)$ in practice
Extensions of Our Algorithms

- Accelerate ARW

- Compute Upper Bound of $\alpha(G)$
Outline

- Introduction
- Existing Works
- Our Reducing-Peeling Framework
- Our Approaches
- Experimental Studies
- Conclusion
Experimental Settings

- **Datasets**
- **Environments**
 - All algorithms are implemented in C++
 - All experiments are conducted on a machine with an Intel(R) Xeon(R) 3.4GHz CPU and 16GB main memory running Linux

<table>
<thead>
<tr>
<th>Graph</th>
<th>#Vertices</th>
<th>#Edges</th>
<th>\bar{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrQc</td>
<td>5,242</td>
<td>14,484</td>
<td>5.53</td>
</tr>
<tr>
<td>CondMat</td>
<td>23,133</td>
<td>93,439</td>
<td>8.08</td>
</tr>
<tr>
<td>AstroPh</td>
<td>18,772</td>
<td>198,050</td>
<td>21.10</td>
</tr>
<tr>
<td>Email</td>
<td>265,214</td>
<td>364,481</td>
<td>2.75</td>
</tr>
<tr>
<td>Epinions</td>
<td>75,879</td>
<td>405,740</td>
<td>10.69</td>
</tr>
<tr>
<td>cnr-2000</td>
<td>325,557</td>
<td>2,738,969</td>
<td>16.83</td>
</tr>
<tr>
<td>dblp</td>
<td>933,258</td>
<td>3,353,618</td>
<td>7.19</td>
</tr>
<tr>
<td>wiki-Talk</td>
<td>2,394,385</td>
<td>4,659,565</td>
<td>3.89</td>
</tr>
<tr>
<td>BerkStan</td>
<td>685,230</td>
<td>6,649,470</td>
<td>19.41</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>1,696,415</td>
<td>11,095,398</td>
<td>13.08</td>
</tr>
<tr>
<td>in-2004</td>
<td>1,382,870</td>
<td>13,591,473</td>
<td>19.66</td>
</tr>
<tr>
<td>eu-2005</td>
<td>862,664</td>
<td>16,138,468</td>
<td>37.42</td>
</tr>
<tr>
<td>soc-pokec</td>
<td>1,632,803</td>
<td>22,301,964</td>
<td>27.32</td>
</tr>
<tr>
<td>LiveJ</td>
<td>4,847,571</td>
<td>42,851,237</td>
<td>17.68</td>
</tr>
<tr>
<td>hollywood</td>
<td>1,985,306</td>
<td>114,492,816</td>
<td>115.34</td>
</tr>
<tr>
<td>indochina</td>
<td>7,414,768</td>
<td>150,984,819</td>
<td>40.73</td>
</tr>
<tr>
<td>uk-2002</td>
<td>18,484,117</td>
<td>261,787,258</td>
<td>28.33</td>
</tr>
<tr>
<td>uk-2005</td>
<td>39,454,746</td>
<td>783,027,125</td>
<td>39.70</td>
</tr>
<tr>
<td>webbase</td>
<td>115,657,290</td>
<td>854,809,761</td>
<td>14.78</td>
</tr>
<tr>
<td>it-2004</td>
<td>41,290,682</td>
<td>1,027,474,947</td>
<td>49.77</td>
</tr>
</tbody>
</table>
Accuracy

- Gap to the maximum independent set size

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Independence Number</th>
<th>Greedy</th>
<th>DU</th>
<th>SemiE</th>
<th>BDOne</th>
<th>BDTwo</th>
<th>LinearTime</th>
<th>NearLinear</th>
<th>Accuracy of NearLinear</th>
<th>Kernel Graph Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrQc</td>
<td>2,459</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>CondMat</td>
<td>9,612</td>
<td>17</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>AstroPh</td>
<td>6,760</td>
<td>24</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Email</td>
<td>246,898</td>
<td>76</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Epinions</td>
<td>53,599</td>
<td>170</td>
<td>3</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>dblp</td>
<td>434,289</td>
<td>484</td>
<td>63</td>
<td>53</td>
<td>45</td>
<td>5</td>
<td>4</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>wiki-Talk</td>
<td>2,338,222</td>
<td>536</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>BerkStan</td>
<td>408,482</td>
<td>11,092</td>
<td>3,000</td>
<td>4,458</td>
<td>1,088</td>
<td>385</td>
<td>766</td>
<td>428</td>
<td>99.895%</td>
<td>55,990</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>1,170,580</td>
<td>34,591</td>
<td>2,336</td>
<td>5,886</td>
<td>319</td>
<td>55</td>
<td>170</td>
<td>39</td>
<td>99.99%</td>
<td>9,733</td>
</tr>
<tr>
<td>in-2004</td>
<td>896,724</td>
<td>14,832</td>
<td>3,553</td>
<td>5,918</td>
<td>656</td>
<td>351</td>
<td>412</td>
<td>57</td>
<td>99.99%</td>
<td>19,575</td>
</tr>
<tr>
<td>LiveJ</td>
<td>2,631,903</td>
<td>32,997</td>
<td>6,138</td>
<td>7,364</td>
<td>1,494</td>
<td>343</td>
<td>378</td>
<td>33</td>
<td>99.998%</td>
<td>10,173</td>
</tr>
<tr>
<td>hollywood</td>
<td>327,949</td>
<td>98</td>
<td>45</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>0*</td>
<td>100%</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: The gap of the reported independent set size to the independence number computed by VCSolver [1] (* denotes that the independent set is reported as a maximum independent set by our algorithms)
Processing Time

(a) Compared with Existing Techniques

(b) Compare Our Techniques

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Complexity</th>
<th>Space Complexity</th>
<th>Exact Reduction Rules Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDOOne</td>
<td>$O(m)$</td>
<td>$2m + O(n)$</td>
<td>Degree-one reduction [21]</td>
</tr>
<tr>
<td>BDTwo</td>
<td>$O(n \times m)$</td>
<td>$6m + O(n)$</td>
<td>Degree-one reduction [21] & Degree-two vertex reductions [21]</td>
</tr>
<tr>
<td>LinearTime</td>
<td>$O(m)$</td>
<td>$2m + O(n)$</td>
<td>Degree-one reduction [21] & Degree-two path reduction (this paper)</td>
</tr>
<tr>
<td>NearLinear</td>
<td>$O(m \times \Delta)$</td>
<td>$4m + O(n)$</td>
<td>Dominance reduction [21] & Degree-two path reduction (this paper)</td>
</tr>
</tbody>
</table>

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, Δ: maximum vertex degree)
Memory Usage

(a) Compared with Existing Techniques

(b) Compare Our Techniques

![Bar chart showing memory usage comparison]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Complexity</th>
<th>Space Complexity</th>
<th>Exact Reduction Rules Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDOne</td>
<td>$O(m)$</td>
<td>$2m + O(n)$</td>
<td>Degree-one reduction [21]</td>
</tr>
<tr>
<td>BDTwo</td>
<td>$O(n \times m)$</td>
<td>$6m + O(n)$</td>
<td>Degree-one reduction [21] & Degree-two vertex reductions [21]</td>
</tr>
<tr>
<td>LinearTime</td>
<td>$O(m)$</td>
<td>$2m + O(n)$</td>
<td>Degree-one reduction [21] & Degree-two path reduction (this paper)</td>
</tr>
<tr>
<td>NearLinear</td>
<td>$O(m \times \Delta)$</td>
<td>$4m + O(n)$</td>
<td>Dominance reduction [21] & Degree-two path reduction (this paper)</td>
</tr>
</tbody>
</table>

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, Δ: maximum vertex degree)
Boost ARW

ARW-NL, ARW-LT: ARW boosted by NearLinear and LinearTime, respectively.

Convergence plots of local search algorithms
Outline

- Introduction
- Existing Works
- Our Reducing-Peeling Framework
- Our Approaches
- Experimental Studies
- Conclusion
Conclusion

- A new Reducing-Peeling framework
- Time-efficient and space-effective techniques to implement the reducing-peeling framework
- Find large independent sets efficiently for large real-world graphs with billions of edges
Thank you!

Question?

Lijun.Chang@unsw.edu.au