
Computer Science and Engineering

Computing	A	Near-Maximum	
Independent	Set	in	Linear	Time	by	
Reducing-Peeling

Lijun Chang

University of New South Wales, Australia
Lijun.Chang@unsw.edu.au

Joint work with Wei Li, Wenjie Zhang

Outline

q Introduction

q Existing Works

q Our Reducing-Peeling Framework

q Our Approaches

q Experimental Studies

q Conclusion

Introduction

Given a graph ! = ($, &), a vertex subset (⊆ $ is an independent
set if for any two vertices * and + in (, there is no edge between *
and + in !.

Independent Set

An independent set	(of ! is a maximum independent set if its size
is the largest among all independent sets of !.

Maximum Independent Set

Introduction

Given a graph ! = ($, &), a vertex subset (⊆ $ is an independent
set if for any two vertices * and + in (, there is no edge between *
and + in !.

Independent Set

An independent set	(of ! is a maximum independent set if its size
is the largest among all independent sets of !.sets of !.

Maximum Independent Set

Independent
Set

Introduction

Given a graph ! = ($, &), a vertex subset (⊆ $ is an independent
set if for any two vertices * and + in (, there is no edge between *
and + in !.

Independent Set

An independent set	(of ! is a maximum independent set if its size
is the largest among all independent sets of !.

Maximum Independent Set

Maximum
Independent

Set

Introduction

Applications
v Build index for shortest path/distance queries [Cheng et al.

SIGMOD’12, Fu et al. VLDB’13]
v Refine the result of matching two graphs [Zhu et al. VLDB J’13]
v Social network coverage [Puthal et al. BigData’15]; vertex

cover

Hardness
v NP-hard to compute a maximum independent set [Garey et al.

Book’79]
v Hard to approximate

§ NP-hard to approximate within a factor of -./0 for any 0 <
3 < 1 [J. Håstad. FOCS’96]

Outline

q Introduction

q Existing Works

q Our Reducing-Peeling Framework

q Our Approaches

q Experimental Studies

q Conclusion

Existing Works
Exact algorithms -- branch-and-reduce paradigm

v [F. V. Fomin et al .J.ACM’09]
§ Theoretically runs in 5∗ 1.22019 time

v [T. Akiba et al. Theor. Comput. Sci.’16]
§ Practically computes the exact solution for many small and

medium-sized graphs

Approximation algorithms
v [U. Feige J. Discrete Math’04, M. M. Halldórsson et al.

Algorithmica’97, P. Berman. Theor.Comput. Sys.’99]
§ Approximation ratio largely depends on n or Δ
§ Not practically useful

Existing Works

Heuristic algorithms for large graphs
v Linear-time algorithms

§ Greedy, dynamic update
§ Efficient, but can only find small independent sets in

practice
v Iterative randomized searching

§ Local search algorithm: ARW [D. V. Andrade.
J.Heuristics’12]

§ Evolutionary algorithm: ReduMIS [S. Lamm. ALENEX’16]
§ Local search + simple reduction rules: OnlineMIS [J.

Dahlum. SEA’16]
§ Can find large independent sets, but take long time

Our goal: find large independent sets in a time-efficient
and space-effective manner

Outline

q Introduction

q Existing Works

q Our Reducing-Peeling Framework

q Our Approaches

q Experimental Studies

q Conclusion

Three Observations Utilized in Our Framework
v Observation–I: Real networks are usually power-law graphs with

many low-degree vertices

v Observation-II: Reduction rules have been effectively used for low-
degree vertices

v Observation-III: High-degree vertices are less likely to be in a
maximum independent set

;< =>? = @ ∝
B

@C

Three Observations Utilized in Our Framework
v Observation–I: Real networks are usually power-law graphs with

many low-degree vertices

v Observation-II: Reduction rules have been effectively used for
low-degree vertices

(b) Isolation D ! = D !\ +, F
(c) Folding D ! = D !/ *, +, F + 1

v Observation-III: High-degree vertices are less likely to be in a
maximum independent set

(a) D ! = D !\ +

Degree-one Reduction

Degree-two Reductions
D ! : J-KLML-KL-NL	-*OPLQ	RS	!

Three Observations Utilized in Our Framework
v Observation–I: Real networks are usually power-law graphs with

many low-degree vertices

v Observation-II: Reduction rules have been effectively used for low-
degree vertices

v Observation-III: High-degree vertices are less likely to be in a
maximum independent set

Ø If a high-degree vertex is added into the independent set, then
all its neighbors, which are of a large quantity, are ruled out
from the independent set [J. Dahlum et al SEA’16]

Ø Removing/peeling high-degree vertices can further sparsify the
graph [Y. Lim et al TKDE’14]

The Reducing-Peeling Framework
Definition 3.1: (Inexact Reduction) Given a graph !, we
remove/peel the vertex with the highest degree from !.

v Phase 1: Reducing
Ø While a reduction rule can be applied on a vertex * then

Apply the exact reduction rule on *

v Phase 2: Peeling
Ø Apply the inexact reduction rule to temporarily remove a high-

degree vertex

v Repeat the above two phases until there is no edge in the graph

v Post-process: Iteratively add a temporarily removed vertex to the
solution if the independence requirement is not violated

Outline

q Introduction

q Existing Works

q Our Reducing-Peeling Framework

q Our Approaches

q Experimental Studies

q Conclusion

Overview of Our Approaches

v Compute large independent set for large graphs in a
time-efficient and space-effective manner
§ Subquadratic (or even linear) time.
§ 2m + O(n) space: m is the number of undirected edges.

§ A graph is stored in 2m + n + O(1) space by the adjacency
array (aka, Compressed Sparse Row) graph representation

§ A graph with one billion edges takes slightly more than 8GB
memory

An Efficient Baseline Algorithm
v BDOne

Step 1:
While $T. ≠ ∅ or $WX ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily

removed vertices

=>? YB = B

An Efficient Baseline Algorithm
v BDOne =>? YB = B

YZ	[\][^_	^_>	_[?_>\^	=>?<>>

Step 1:
While $T. ≠ ∅ or $WX ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily

removed vertices

An Efficient Baseline Algorithm
v BDOne =>? YB = B

YZ	[\][^_	^_>	_[?_>\^	=>?<>>

Step 1:
While $T. ≠ ∅ or $WX ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily

removed vertices

An Efficient Baseline Algorithm
v BDOne =>? YB = B

YZ	[\][^_	^_>	_[?_>\^	=>?<>>

Step 1:
While $T. ≠ ∅ or $WX ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily

removed vertices

An Efficient Baseline Algorithm
v BDOne =>? YB = B

YZ	[\][^_	_[?_>\^	=>?<>>

Complexity Analysis
Time: 5 O
Space: 2O + 5 -

Step 1:
While $T. ≠ ∅ or $WX ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily

removed vertices

An Effective Baseline Algorithm
v BDTwo

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwo-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily removed

vertices

=>? YB = B

An Effective Baseline Algorithm
v BDTwo =>? YB = B

=>? Ya = b

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwo-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily removed

vertices

An Effective Baseline Algorithm
v BDTwo =>? YB = B

=>? Ya = b

Complexity Analysis
Time: 5 -×O 	and	g O + -hRi-
Space: 6O + 5 -

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwo-Reduction

Else
Inexact-Reduction

Step 2:
Recover temporarily removed

vertices

An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two. For a maximal degree-two path
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected
to +. and +m, respectively.

Case 1: + = F

⟹ D ! = D !\ +

An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two. For a maximal degree-two path
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected
to +. and +m, respectively.

Case 2: k is odd and +, F ∈ &

⟹ D ! = D !\ +, F

An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two. For a maximal degree-two path
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected
to +. and +m, respectively.

Case 3: k is odd and +, F ∉ &

⟹ D !

= D !\ +X, … , +m ⋃ +., F +
k − 1

2

An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two. For a maximal degree-two path
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected
to +. and +m, respectively.

Case 4: k is even and
+, F ∈ &

⟹ D !

= D !\ +., … , +m +
k

2

An Effective Linear-Time Algorithm
v LinearTime

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
! = $, & with minimum degree two. For a maximal degree-two path
k = +., +X, … , +m , let + ∉ k and F ∉ k be the unique vertices connected
to +. and +m, respectively.

Case 5: k is even and
+, F ∉ &

⟹ D !
= D !\ +., … , +m ⋃ +, F

+
k

2

An Effective Linear-Time Algorithm
v LinearTime

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else
Inexact-Reduction

Step 2: Recover temporarily
removed vertices

An Effective Linear-Time Algorithm
v LinearTime

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else
Inexact-Reduction

Step 2: Recover temporarily
removed vertices

An Effective Linear-Time Algorithm
v LinearTime

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else
Inexact-Reduction

Step 2: Recover temporarily
removed vertices

An Effective Linear-Time Algorithm
v LinearTime

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else
Inexact-Reduction

Step 2: Recover temporarily
removed vertices

An Effective Linear-Time Algorithm
v LinearTime

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else
Inexact-Reduction

Step 2: Recover temporarily
removed vertices

An Effective Linear-Time Algorithm
v LinearTime

Step 1:
While $T. ≠ ∅ or $TX ≠ ∅ or $W` ≠ ∅

If $T. ≠ ∅ then
DegreeOne-Reduction

Else if $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else
Inexact-Reduction

Step 2: Recover temporarily
removed vertices

Complexity Analysis
Time: 5 O
Space: 2O + 5 -

A Near-Linear-Time Algorithm
v NearLinear

Lemma 5.1: (Dominance Reduction) [F. V. Fomin et al. JACM’09]
Vertex v dominates vertex u if +, * ∈ & and all neighbors of v other
than u are also connected to u (i.e., s + \ * ⊆ s *). If v dominates
u, then there exists a maximum independent set of G the excludes u;
thus, we can remove u from G, and D ! = D !\ * .

Lemma 5.2: Vertex v dominates its neighbor u iff ∆ +, * = K + − 1,
where ∆ +, * 	is the number of triangles containing u and v

A Near-Linear-Time Algorithm
v NearLinear
Step1: Maintain the set u of candidate
dominated vertices, and also maintain ∆ +, *
for every edge +, *

Step 2:
While $TX ≠ ∅ or u ≠ ∅ or $W` ≠ ∅

If $TX ≠ ∅ then
DegreeTwoPath-Reduction

Else if u ≠ ∅	then
dominance reduction

Else
Inexact-Reduction

Step 2: Recover temporarily removed vertices

Complexity Analysis
Time: 5 O×Δ
(Δ is the maximum degree
in !)

Space: 4O + 5 - in worst
case and 2O + 5 - in
practice

Extensions of Our Algorithms

v Accelerate ARW

v Compute Upper Bound of D !

Outline

q Introduction

q Existing Works

q Our Reducing-Peeling Framework

q Our Approaches

q Experimental Studies

q Conclusion

Experimental Settings
v Datasets

v Environments
Ø All algorithms are

implemented in C++
Ø All experiments are

conducted on a
machine with an Intel(R)
Xeon(R) 3.4GHz CPU
and 16GB main
memory running Linux

Accuracy

v Gap to the maximum independent set size

Processing Time

(a) Compared
with
Existing
Techniques

(b) Compare
Our
Techniques

Memory Usage
(a) Compared

with
Existing
Techniques

(b) Compare
Our
Techniques

Boost ARW

ARW-NL, ARW-LT: ARW boosted by NearLinear and LinearTime, respectively.

Convergence plots of local search algorithms

Outline

q Introduction

q Existing Works

q Our Reducing-Peeling Framework

q Our Approaches

q Experimental Studies

q Conclusion

Conclusion

p A new Reducing-Peeling framework

p Time-efficient and space-effective techniques to implement the
reducing-peeling framework

p Find large independent sets efficiently for large real-world
graphs with billions of edges

