# Computing A Near-Maximum Independent Set in Linear Time by Reducing-Peeling

**Never Stand Still** 

Engineering

Computer Science and Engineering

#### Lijun Chang

University of New South Wales, Australia Lijun.Chang@unsw.edu.au

Joint work with Wei Li, Wenjie Zhang

# Outline

#### □ Introduction

- **D** Existing Works
- □ Our Reducing-Peeling Framework
- Our Approaches
- □ Experimental Studies
- □ Conclusion



#### Independent Set

Given a graph G = (V, E), a vertex subset  $I \subseteq V$  is an independent set if for any two vertices u and v in I, there is no edge between u and v in G.

#### Maximum Independent Set

An independent set I of G is a maximum independent set if its size is the largest among all independent sets of G.





#### Independent Set

Given a graph G = (V, E), a vertex subset  $I \subseteq V$  is an independent set if for any two vertices u and v in I, there is no edge between u and v in G.

#### Maximum Independent Set

An independent set I of G is a maximum independent set if its size is the largest among all independent sets of G.





#### Independent Set

Given a graph G = (V, E), a vertex subset  $I \subseteq V$  is an independent set if for any two vertices u and v in I, there is no edge between u and v in G.

#### Maximum Independent Set

An independent set I of G is a maximum independent set if its size is the largest among all independent sets of G.





#### **Applications**

- Build index for shortest path/distance queries [Cheng et al. SIGMOD'12, Fu et al. VLDB'13]
- ✤ Refine the result of matching two graphs [Zhu et al. VLDB J'13]
- Social network coverage [Puthal et al. BigData'15]; vertex cover

#### Hardness

- NP-hard to compute a maximum independent set [Garey et al. Book'79]
- ✤ Hard to approximate
  - NP-hard to approximate within a factor of  $n^{1-\varepsilon}$  for any  $0 < \varepsilon < 1$  [J. Håstad. FOCS'96]



# Outline

#### □ Introduction

#### **Existing Works**

□ Our Reducing-Peeling Framework

- Our Approaches
- **D** Experimental Studies
- □ Conclusion



# **Existing Works**

Exact algorithms -- *branch-and-reduce paradigm* 

- ✤ [F. V. Fomin et al .J.ACM'09]
  - Theoretically runs in  $O^*(1.2201^n)$  time
- ✤ [T. Akiba et al. *Theor. Comput. Sci.*'16]
  - Practically computes the exact solution for many small and medium-sized graphs

Approximation algorithms

- [U. Feige J. Discrete Math'04, M. M. Halldórsson et al. Algorithmica'97, P. Berman. Theor.Comput. Sys.'99]
  - Approximation ratio largely depends on n or  $\Delta$
  - Not practically useful



# **Existing Works**

Heuristic algorithms for large graphs

- Linear-time algorithms
  - Greedy, dynamic update
  - Efficient, but can only find small independent sets in practice
- Iterative randomized searching
  - Local search algorithm: ARW [D. V. Andrade. J.Heuristics'12]
  - Evolutionary algorithm: ReduMIS [S. Lamm. ALENEX'16]
  - Local search + simple reduction rules: OnlineMIS [J. Dahlum. SEA'16]
  - Can find large independent sets, but take long time

*Our goal: find large independent sets in a time-efficient and space-effective* manner



# Outline

#### □ Introduction

**D** Existing Works

#### **Our Reducing-Peeling** Framework

- Our Approaches
- □ Experimental Studies

#### □ Conclusion



### **Three Observations Utilized in Our Framework**

Observation—I: Real networks are usually power-law graphs with many low-degree vertices



- Observation-II: Reduction rules have been effectively used for lowdegree vertices
- Observation-III: High-degree vertices are less likely to be in a maximum independent set



### **Three Observations Utilized in Our Framework**

- Observation—I: Real networks are usually power-law graphs with many low-degree vertices
- Observation-II: Reduction rules have been effectively used for low-degree vertices

Degree-one Reduction

(a)  $\alpha(G) = \alpha(G \setminus \{v\})$ 

 $\alpha(G)$ : independence number of G

Degree-two Reductions

(b) Isolation  $\alpha(G) = \alpha(G \setminus \{v, w\})$ (c) Folding  $\alpha(G) = \alpha(G \setminus \{u, v, w\}) + 1$ 



Observation-III: High-degree vertices are less likely to be in a maximum independent set



#### **Three Observations Utilized in Our Framework**

- Observation—I: Real networks are usually power-law graphs with many low-degree vertices
- Observation-II: Reduction rules have been effectively used for lowdegree vertices
- Observation-III: High-degree vertices are less likely to be in a maximum independent set
  - If a high-degree vertex is added into the independent set, then all its neighbors, which are of a large quantity, are ruled out from the independent set [J. Dahlum et al SEA'16]
  - Removing/peeling high-degree vertices can further sparsify the graph [Y. Lim et al TKDE'14]



### The Reducing-Peeling Framework

**Definition 3.1: (Inexact Reduction)** Given a graph G, we remove/peel the vertex with the highest degree from G.

- Phase 1: Reducing
  - > While a reduction rule can be applied on a vertex u then Apply the exact reduction rule on u
- ✤ Phase 2: Peeling
  - Apply the inexact reduction rule to temporarily remove a highdegree vertex
- Repeat the above two phases until there is no edge in the graph
- Post-process: Iteratively add a temporarily removed vertex to the solution if the independence requirement is not violated



# Outline

- □ Introduction
- **D** Existing Works
- □ Our Reducing-Peeling Framework
- **Our Approaches**
- □ Experimental Studies
- □ Conclusion



### **Overview of Our Approaches**

Compute large independent set for large graphs in a time-efficient and space-effective manner

- Subquadratic (or even linear) time.
- 2m + O(n) space: *m* is the number of undirected edges.
  - A graph is stored in 2m + n + O(1) space by the adjacency array (aka, Compressed Sparse Row) graph representation
  - A graph with one billion edges takes slightly more than 8GB memory

| Algorithm                                                                                                 | Time Complexity      | Space Complexity | Exact Reduction Rules Used                                         |  |
|-----------------------------------------------------------------------------------------------------------|----------------------|------------------|--------------------------------------------------------------------|--|
| BDOne                                                                                                     | O(m)                 | 2m + O(n)        | Degree-one reduction [21]                                          |  |
| BDTwo                                                                                                     | $O(n \times m)$      | 6m + O(n)        | Degree-one reduction [21] & Degree-two vertex reductions [21]      |  |
| LinearTime                                                                                                | O(m)                 | 2m + O(n)        | Degree-one reduction [21] & Degree-two path reduction (this paper) |  |
| NearLinear                                                                                                | $O(m \times \Delta)$ | 4m + O(n)        | Dominance reduction [21] & Degree-two path reduction (this paper)  |  |
| Table 1: Quantized of our approaches (re number of vertices, re number of edges A: maximum vertex degree) |                      |                  |                                                                    |  |

Table 1: Overview of our approaches (n: number of vertices, m: number of edges,  $\Delta$ : maximum vertex degree)

































 $v_6$ 







#### BDTwo



#### **Complexity Analysis**

Time:  $O(n \times m)$  and  $\Omega(m + nlogn)$ Space: 6m + O(n)





#### ✤ LinearTime











#### ✤ LinearTime





#### ✤ LinearTime





#### ✤ LinearTime





#### ✤ LinearTime

Step 1: While  $V_{=1} \neq \emptyset$  or  $V_{=2} \neq \emptyset$  or  $V_{\geq 3} \neq \emptyset$ If  $V_{=1} \neq \emptyset$  then **DegreeOne-Reduction** Else if  $V_{=2} \neq \emptyset$  then DegreeTwoPath-Reduction Else Inexact-Reduction Step 2: Recover temporarily removed vertices

**Complexity Analysis** Time: O(m)Space: 2m + O(n)





### **A Near-Linear-Time Algorithm**

#### ✤ NearLinear

**Lemma 5.1: (Dominance Reduction)** [F. V. Fomin et al. *JACM'09*] Vertex *v* dominates vertex *u* if  $(v, u) \in E$  and all neighbors of *v* other than *u* are also connected to *u* (i.e.,  $N(v) \setminus \{u\} \subseteq N(u)$ ). If *v* dominates *u*, then there exists a maximum independent set of *G* the excludes *u*; thus, we can remove *u* from *G*, and  $\alpha(G) = \alpha(G \setminus \{u\})$ .



**Lemma 5.2:** Vertex v dominates its neighbor u iff  $\Delta(v, u) = d(v) - 1$ , where  $\Delta(v, u)$  is the number of triangles containing u and v



### **A Near-Linear-Time Algorithm**

#### ✤ NearLinear

```
Step1: Maintain the set D of candidate
dominated vertices, and also maintain \Delta(v, u)
for every edge (v, u)
```

```
Step 2:

While V_{=2} \neq \emptyset or D \neq \emptyset or V_{\geq 3} \neq \emptyset

If V_{=2} \neq \emptyset then

Else if D \neq \emptyset then

dominance reduction

Else
```

*Inexact-Reduction* Step 2: Recover temporarily removed vertices

#### **Complexity Analysis**

Time:  $O(m \times \Delta)$ ( $\Delta$  is the maximum degree in G)

Space: 4m + O(n) in worst case and 2m + O(n) in practice



### **Extensions of Our Algorithms**

Accelerate ARW

• Compute Upper Bound of  $\alpha(G)$ 



# Outline

- □ Introduction
- **D** Existing Works
- □ Our Reducing-Peeling Framework
- Our Approaches
- **Experimental Studies**
- □ Conclusion



# **Experimental Settings**

#### Datasets

#### Environments

- All algorithms are implemented in C++
- All experiments are conducted on a machine with an Intel(R) Xeon(R) 3.4GHz CPU and 16GB main memory running Linux

| Graph      | #Vertices   | #Edges        | $\overline{d}$ |
|------------|-------------|---------------|----------------|
| GrQc       | 5,242       | 14,484        | 5.53           |
| CondMat    | 23,133      | 93,439        | 8.08           |
| AstroPh    | 18,772      | 198,050       | 21.10          |
| Email      | 265,214     | 364,481       | 2.75           |
| Epinions   | 75,879      | 405,740       | 10.69          |
| cnr-2000   | 325,557     | 2,738,969     | 16.83          |
| dblp       | 933,258     | 3,353,618     | 7.19           |
| wiki-Talk  | 2,394,385   | 4,659,565     | 3.89           |
| BerkStan   | 685,230     | 6,649,470     | 19.41          |
| as-Skitter | 1,696,415   | 11,095,398    | 13.08          |
| in-2004    | 1,382,870   | 13,591,473    | 19.66          |
| eu-2005    | 862,664     | 16,138,468    | 37.42          |
| soc-pokec  | 1,632,803   | 22,301,964    | 27.32          |
| LiveJ      | 4,847,571   | 42,851,237    | 17.68          |
| hollywood  | 1,985,306   | 114,492,816   | 115.34         |
| indochina  | 7,414,768   | 150,984,819   | 40.73          |
| uk-2002    | 18,484,117  | 261,787,258   | 28.33          |
| uk-2005    | 39,454,746  | 783,027,125   | 39.70          |
| webbase    | 115,657,290 | 854,809,761   | 14.78          |
| it-2004    | 41,290,682  | 1,027,474,947 | 49.77          |



#### Accuracy

#### Gap to the maximum independent set size

| Graphs Independent |           | Gap to the Independence Number |       |       |       |       |            |            | Accuracy      | Kernel Graph Size |
|--------------------|-----------|--------------------------------|-------|-------|-------|-------|------------|------------|---------------|-------------------|
| Graphs             | Number    | Greedy                         | DU    | SemiE | BDOne | BDTwo | LinearTime | NearLinear | of NearLinear | by NearLinear     |
| GrQc               | 2,459     | 5                              | 1     | 1     | 0     | 0     | 0          | 0*         | 100%          | 0                 |
| CondMat            | 9,612     | 17                             | 5     | 1     | 4     | 2     | 1          | 0*         | 100%          | 0                 |
| AstroPh            | 6,760     | 24                             | 10    | 1     | 2     | 0     | 1          | 0*         | 100%          | 0                 |
| Email              | 246,898   | 76                             | 0     | 1     | 0     | 0*    | 0          | 0*         | 100%          | 0                 |
| Epinions           | 53,599    | 170                            | 3     | 14    | 0     | 0     | 0          | 0          | 100%          | 6                 |
| dblp               | 434,289   | 484                            | 63    | 53    | 45    | 5     | 4          | 0*         | 100%          | 0                 |
| wiki-Talk          | 2,338,222 | 536                            | 0     | 14    | 0     | 0     | 0          | 0*         | 100%          | 0                 |
| BerkStan           | 408,482   | 11,092                         | 3,000 | 4,458 | 1,088 | 385   | 766        | 428        | 99.895%       | 55,990            |
| as-Skitter         | 1,170,580 | 34,591                         | 2,336 | 5,886 | 319   | 55    | 170        | 39         | 99.997%       | 9,733             |
| in-2004            | 896,724   | 14,832                         | 3,553 | 5,918 | 656   | 351   | 412        | 57         | 99.993%       | 19,575            |
| LiveJ              | 2,631,903 | 32,997                         | 6,138 | 7,364 | 1,494 | 343   | 378        | 33         | 99.998%       | 10,173            |
| hollywood          | 327,949   | 98                             | 45    | 8     | 16    | 4     | 4          | 0*         | 100%          | 0                 |

Table 3: The gap of the reported independent set size to the independence number computed by VCSolver [1] (\* denotes that the independent set is reported as a maximum independent set by our algorithms)





| Algorithm  | Time Complexity      | Space Complexity | Exact Reduction Rules Used                                         |
|------------|----------------------|------------------|--------------------------------------------------------------------|
| BDOne      | O(m)                 | 2m + O(n)        | Degree-one reduction [21]                                          |
| BDTwo      | $O(n \times m)$      | 6m + O(n)        | Degree-one reduction [21] & Degree-two vertex reductions [21]      |
| LinearTime | O(m)                 | 2m + O(n)        | Degree-one reduction [21] & Degree-two path reduction (this paper) |
| NearLinear | $O(m \times \Delta)$ | 4m + O(n)        | Dominance reduction [21] & Degree-two path reduction (this paper)  |

Table 1: Overview of our approaches (n: number of vertices, m: number of edges,  $\Delta$ : maximum vertex degree)

MANU II MENTE

#### Memory Usage Greedv DU SemiE **BDOne** Memory Usage (KB) 01 0 1 0 (a) Compared with Existing 10<sup>4</sup> Techniques 10<sup>3</sup> Livel hollywood irQ<sup>c</sup>ondMat CondMat Epinions GrOC dblP. Talk Stan kitter 2004, wiki Berk as Skitter 2004, BDOne NearLinear **VCSolver BDTwo** LinearTime Memory Usage (KB) 10<sup>6</sup> (b) Compare 10<sup>5</sup> Our 10<sup>4</sup> Techniques 10<sup>3</sup> 10<sup>2</sup> dblp Talk Stan kitter 2004 Lived wiki Berk as Skitter hollywood rOcondMatroph Email Finions GrOC

| Algorithm  | Time Complexity      | Space Complexity | Exact Reduction Rules Used                                         |
|------------|----------------------|------------------|--------------------------------------------------------------------|
| BDOne      | O(m)                 | 2m + O(n)        | Degree-one reduction [21]                                          |
| BDTwo      | $O(n \times m)$      | 6m + O(n)        | Degree-one reduction [21] & Degree-two vertex reductions [21]      |
| LinearTime | O(m)                 | 2m + O(n)        | Degree-one reduction [21] & Degree-two path reduction (this paper) |
| NearLinear | $O(m \times \Delta)$ | 4m + O(n)        | Dominance reduction [21] & Degree-two path reduction (this paper)  |

Table 1: Overview of our approaches (n: number of vertices, m: number of edges,  $\Delta$ : maximum vertex degree)

MANU II MENTE

#### **Boost ARW**

ARW-NL, ARW-LT: ARW boosted by NearLinear and LinearTime, respectively.



Convergence plots of local search algorithms



# Outline

- □ Introduction
- **D** Existing Works
- □ Our Reducing-Peeling Framework
- Our Approaches
- □ Experimental Studies
- **Conclusion**



#### Conclusion

- □ A new Reducing-Peeling framework
- Time-efficient and space-effective techniques to implement the reducing-peeling framework
- Find large independent sets efficiently for large real-world graphs with billions of edges



# Thank you I Question?



# Lijun.Chang@unsw.edu.au

