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Problem Definition

» Independent Set
Given a graph G = (V, E), avertex subset ] € V is an independent set if for any two
vertices u and v in [, there is no edge between u and v in G.
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» Problem Statement
Given a graph G = (V, E), compute an independent set I of G whose size is the largest
among all independent sets of G.
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Reducing-Peeling Framework

» The Framework

Algorithm 1: Reducing-Peeling Framework

Input: A graph G = (V, E), and a set of exact reduction rules R
Output: A maximal independent set / in G Definition: (Inexact Reduction)

while G contains edges do Given a graph G, we

1

2 | ifareduction rule in R can be applied on a vertex u then .

3 | Apply the exact reduction rule on u;  /* Reducing */; remove/peel the vertex with
4 | else Apply the inexact reduction rule; /% Peeling */; the highest degree from G.
s 1 « the set of degree-zero vertices in G

6 Extend / to be a maximal independent set;

7 return [;

» Main Observations
* Real networks are usually power-law graphs with many low-degree vertices
* Reduction rules have been effectively used for low-degree vertices
* High-degree vertices are less likely to be in a maximum independent set

Our Approaches
» BDOne & BDTwo

Existing Works
» NP-hard [Garey et al. Book’79] and APX-hard [J. Hastad. FOCS’96]

> Exact Algorithms
branch-and-reduce paradigm [F. V. Fomin et al J.ACM’09, T. Akiba et al. Theor. Comput.
Sci’16)
* Theoretically runs in 0*(1.2201™) time and practically computes the exact solution for
many small and medium-sized graphs, but does not handle large graphs well.

» Approximation Algorithms
* [U. Feige J. Discrete Math’04, M. M. Hallddrsson et al. Algorithmica’97, P. Berman.
Theor.Comput. Sys.”99]
* Approximation ratio largely depends on n or A. Not practically useful

» Heuristic Algorithms
* Linear-time algorithms
= Greedy, and dynamic update
= Efficient, but can only find small independent sets in practice.
. Iterative randomized searching algorithms

[D. V. Andrade. J.Heuristics’12), ReduMIS [S. Lamm. ALENEX’16], OnlineMIS [J.
Dah um. SEA 165

= Can find large independent sets, but take long time

(a) a(G) = a(G\{v}) ] @
a(G): independence number of G

(b) Isolation a(G) = a(G\{v,w})
(c) Folding a(G) = a(G/{u, v,w}) + 1
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Overview of Our Approaches
» Compute large independent set for large graphs in a time-efficient and space-effective
manner
* Subquadratic (or even linear) time
e 2m + O(n) space: m is the number of undirected edges.

Algorithm | Time Complexity _ Space Complexity Exact Reduction Rules Used

BDOne 0(m) 2m + O(n) Degree-one reduction [21]

BDTwo O(nx m) 6m + O(n) Degree-one reduction [21] & Degree-two vertex reductions [21]
LinearTime O(m) 2m + O(n) Degree-one reduction [21] & Degree-two path reduction (this paper)
NearLinear O(m x A) 4m + O(n) Dominance reduction [21] & Degree-two path reduction (this paper)

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, A: maximum vertex degree)

N . Figure 4: Degree-two path reductions
> NearLinear

Lemma 5.1: (Dominance Reduction) [F. V. Fomin et al. JACM’09] Vertex v dominates vertex u
if (v,u) € E and all neighbors of v other than u are also connected to u (i.e., N(v)\{u} €
N(w)). If v dominates u, then there exists a maximum independent set of G the excludes u;
thus, we can remove u from G, and a(G) = a(G\{u}).

Lemma 5.2: Vertex v dominates its neighbor v iff A(v,u) =
d(v) — 1, where A(v, w) is the number of triangles u
containing u and v

Performance Studies

Graphs Gap o the Number Accuracy || Kemmel Graph Size
* Number | Greedy | DU | SemiE || BDOne [ BDTwo | LinearTime| | Nearlinear | of NearLinear || by NearLinear
GrQe 2459 5 I 1 0 0 [ 100% 0
CondMat 9,612 17 s 1 4 2 1 o 100% 0
AstroPh 6,760 24 10 1 2 0 1 o 100% 0
Email 246,898 76 0 1 o 0 0 o 100% 0
Epinions 53,599 170 3 14 0 o 0 0 100% 6
dblp 434,289 484 63 53 45 5 4 [ 100% o
wiki-Talk 2,338,222 536 0 14 0 0 0 0 100% 0
BerkStan 408,482 11,092 | 3,000 | 4,458 1,088 385 766 428 99.895% 55,990
as-Skitter 1,170,580 34,591 | 2,336 | 5886 319 55 170 39 99.997% 9,733
in-2004 896,724 14,832 | 3,553 5918 656 351 412 57 99.993% 19,575
Live] 2,631,903 32,997 | 6,138 7,364 1,494 343 378 33 99.998% 10,173
hollywood | 327,949 % 45 8 16 4 4 0 100 [

set is reported as a maximum set by our
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Table 3: The gap of the feported independent set size to the independence mumber computed by VCSolver [1] (* denotes that the independent
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