Computing A Near-Maximum Independent Set in Linear Time by Reducing-Peeling

Lijun Chang, Wei Li, Wenjie Zhang
UNSW Sydney, Australia
Lijun.Chang@unsw.edu.au

Existing Works

> NP-hard [Garey et al. Book'79] and APX-hard [J. Hástad. FOCS'96]

$>$ Exact Algorithms

- branch-and-reduce paradigm [F. V. Fomin et al J.ACM’09, T. Akiba et al. Theor. Comput. Sci.'16]
- Theoretically runs in $O^{*}\left(1.2201^{n}\right)$ time and practically computes the exact solution for many small and medium-sized graphs, but does not handle large graphs well.
> Approximation Algorithms
- [U. Feige J. Discrete Math'04, M. M. Halldórsson et al. Algorithmica'97, P. Berman.

Theor.Comput. Sys.'99]

- Approximation ratio largely depends on n or Δ. Not practically useful

> Heuristic Algorithms

Linear-time algorithms

- Greedy, and dynamic update

都

- Iterative randomized searching algorithms
- ARW [D. V. Andrade. J.Heuristics'12], ReduMIS [S. Lamm. ALENEX'16], OnlineMIS [J.
- Can find large independent sets, but take long time

Overview of Our Approaches

> Compute large independent set for large graphs in a time-efficient and space-effective manner

- Subquadratic (or even linear) time
- $2 m+O(n)$ space: m is the number of undirected edges.

Algorithm	Time Complexity	Space Complexity	Exact Reduction Rules Used
BDOne	$O(m)$	$2 m+O(n)$	Degree-one reduction [21]
BDTwo	$O(n \times m)$	$6 m+O(n)$	Degree-one reduction [21] \& Degree-two vertex reductions [21]
LinearTime	$O(m)$	$2 m+O(n)$	Degree-one reduction [21] \& Degree-two path reduction (this paper)
NearLinear	$O(m \times \Delta)$	$4 m+O(n)$	Dominance reduction [21] \& Degree-two path reduction (this paper)

Our Approaches
> BDOne \& BDTwo
Degree-one Reduction
(a) $\alpha(G)=\alpha(G \backslash\{v\})$
$\alpha(G)$: independence number of G Degree-two Reductions
(b) Isolation $\alpha(G)=\alpha(G \backslash\{v, w\})$
(b) Isolation $\alpha(G)=\alpha(G \backslash\{v, w\})$
(c) Folding $\alpha(G)=\alpha(G /\{u, v, w\})+1$

> LinearTime

Lemma 4.1: (Degree-two Path
Reductions) Consider a graph $G=$ (V, E) with minimum degree two. For a maximal degree-two path $P=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, let $v \notin P$ and $w \notin P$ be the unique vertices connected to v_{1} and v_{l}, respectively.
$>$ NearLinear

Figure 4: Degree-two path reductions

Lemma 5.1: (Dominance Reduction) [F. V. Fomin et al. JACM'09] Vertex v dominates vertex u if $(v, u) \in E$ and all neighbors of v other than u are also connected to u (i.e., $N(v) \backslash\{u\} \subseteq$ $N(u)$). If v dominates u, then there exists a maximum independent set of G the excludes u;
thus, we can remove u from G, and $\alpha(G)=\alpha(G \backslash\{u\})$.

Lemma 5.2: Vertex v dominates its neighbor u iff $\Delta(v, u)=$ $d(v)-1$, where $\Delta(v, u)$ is the number of triangles containing u and v

