
Speeding Up GED Verification
for Graph Similarity Search

Lijun Chang

Joint work with Xing Feng (Google), Xuemin Lin

(UNSW), Lu Qin (UTS), Wenjie Zhang (UNSW), Dian

Ouyang (USYD)

April 22, 2020

Graph Similarity Search

I Given a database D = {g1, g2, g3, . . .} consisting of a set of vertex and/or edge
labeled graphs, graph similarity search aims to find all graphs in D that are similar
to a user-given query graph q.

– Here, inexact/similarity search is used
– Because exact graph search may find no or very few results due to erroneous data

entry, data noise or nature of the application

Results

...

g3

g3 g1

D

q

g2

g1

2/18

Graph Edit Distance

I Graph edit distance (GED) is a widely used distance/similarity measure in graph
similarity search studies.1234

– GED is a metric
I Applicable to all types of graphs
I Captures the structural difference between graphs

– ged(q, g): minimum number of edit operations needed to transform q into g
I Vertex/Edge relabeling
I Edge insertion/deletion
I (Isolated) vertex insertion/deletion

1Xiang Zhao et al. “A Partition-Based Approach to Structure Similarity Search”. In: PVLDB 7.3 (2013).
2Yongjiang Liang and Peixiang Zhao. “Similarity Search in Graph Databases: A Multi-Layered Indexing Approach”. In: Proc. of ICDE’17. 2017.
3Xiang Zhao et al. “Efficient structure similarity searches: a partition-based approach”. In: VLDB J. 27.1 (2018).
4Jongik Kim, Dong-Hoon Choi, and Chen Li. “Inves: Incremental Partitioning-Based Verification for Graph Similarity Search”. In: Proc. of

EDBT’19. 2019.

3/18

Graph Edit Distance

v1

v2 v3

v4A

B B

C

a

a

a

Graph q

u1

u2 u3

u4

u5

B

B B

C

C

a

b

a

ab

Graph g

I ged(q, g) = 5
– The following is a sequence of 5 edit operations that transform q into g

v1

v2 v3

v4B

B B

C

a

a

a

(1) Relabel v1 to
‘B’

v1

v2 v3

v4B

B B

C

a

b

a

(2) Relabel (v2, v3)
to ‘b’

v1

v2 v3

v4

v5

B

B B

C

C

a

b

a

(3) Add v5 with la-
bel ‘C’

v1

v2 v3

v4

v5

B

B B

C

C

a

b

a

b

(4) Add (v1, v5)
with label ‘b’

v1

v2 v3

v4

v5

B

B B

C

C

a

b

a

ab

(5) Add (v4, v5)
with label ‘a’

4/18

Filtering-and-Verification

I Formally, the graph similarity search problem is to compute
{g ∈ D | ged(q, g) ≤ τ} for user-specified q and τ

– A naive approach is checking, for every g ∈ D, whether ged(q, g) ≤ τ
– This is expensive as deciding whether ged(q, g) ≤ τ is NP-complete

I Filtering-and-verification paradigm.
1. Candidate generation: cand ⊆ D

I ged(q, g) > τ for every g ∈ D\cand
I Filter out unpromising data graphs (possibly by probing an offline-constructed index)
I Based on pigeonhole principle: if there are τ + 1 disjoint substructures (e.g., path,

tree, subgraph) of q not appearing in g, then ged(q, g) > τ

2. Candidate verification
I Verify whether ged(q, g) ≤ τ , for every g ∈ cand

5/18

Our Contribution: Speeding Up GED Verification

I The existing studies focus on generating a small candidate set (by designing
different index structures), while using an outdated algorithm A∗GED for GED
verification

I We propose an efficient algorithm AStar+-LSa to speed up GED verification,
which is orthogonal to the existing indexing/filtering techniques

I Our experimental results show that

– The existing indexing/filtering techniques either have very limited filtering power or
take a very long filtering time (e.g., may even longer than directly verifying all data
graphs by AStar+-LSa)

– Thus, the existing indexing/filtering techniques become obsolete given our efficient
GED verification algorithm AStar+-LSa

6/18

GED Computation Via Vertex Mapping

I ged(q, g) can be computed by enumerating vertex mappings from q to g.
– Vertex insertion can be encoded by mapping a dummy vertex to V (g)
– Vertex deletion can be encoded by mapping V (q) to a dummy vertex

f26 f27 f28 f29 f30 f31

f20 f21 f22 f23 f24 f25

f14 f15 f16 f17 f18 f19

f6 f7 f8 f9 f10 f11 · · · · · ·
f1 f2 f3 · · · · · ·

f0

.

.

level

1

2

3

4

5

π

v1

v2

v3

v4

v5

(u5,-) (u1,-) (u5,-) (u2,-) (u2,-) (u1,-)

(u1,-) (u5,-) (u2,-) (u5,-) (u1,-) (u2,-)

(u3, 5) (u4,-) (u5,-)
(u2, 4) (u1,-) (u5,-)

(u2, 5) (u4, 5) (u3,-) (u5,-) (u3, 4) (u1, 6)

(u1, 4) (u4, 4) (u3, 4)

(∅, 0)

A search tree T compactly represents all vertex mappings from V (q) to V (g): fi is a partial

mapping, and beside f at level j is a pair (u, lbf) where u ∈ V (g) is the vertex to which vj
maps and lbf is a lower bound of f

7/18

Our GED Verification Algorithm AStar+-LSa

I AStar+-LSa conducts a best-first search of the search tree T , based on lower
bounds lbf of partial mappings f

– AStar+-LSa uses a fixed matching order of V (q)

I The efficiency of AStar+-LSa is achieved by three ingredients

1. Don’t need to add dummy vertices to q or g
2. Tighter lower bound estimation
3. Efficient lower bound computation

8/18

Ingredient 1: Don’t Add Dummy Vertices

I We prove that if |V (q)| ≤ |V (g), then there is no vertex deletion in the optimal
sequence of edit operations that transform q into g

I W.l.o.g., we assume that |V (q)| = |V (g)|
– If |V (q)| < |V (g)|, then we can add |V (g)| − |V (q)| dummy vertices to q
– Thus, we don’t need to consider vertex insertion/deletion
– In implementation, we don’t add dummy vertices to q even if |V (q)| < |V (g)|

I Advantages of not considering vertex insertion/deletion

– Reduces the number of full mappings from ≈ (|V (g)|+ 1)|V (q)|+|V (g)| to |V (g)||V (q)|

– Simplies algorithm implementation

9/18

Ingredient 2: Tighter Lower Bound Estimation

qf gf

C

B

A

A

A

A

D

E

v3

v4

v5

u1

u2

u4

u5

v1

v2 u3

b

a

a

a a

a

a

a

Graph q Graph g

A

A

I Consider the partial mapping f = {v1 7→ u1, v2 7→ u2}
I The existing algorithms use label set-based lower bound lbLSf

– mcf : the number of edit operations required to transform qf into gf by obeying f
– The vertex (resp. edge) label difference between the unmapped parts qf̄ and gf̄
– lbLSf = mcf + Υ

(
LV (qf̄), LV (gf̄)

)
+ Υ

(
LE(qf̄), LE(gf̄)

)
=

1 + Υ({A,B,C}, {A,A,E}) + Υ({a, a, b}, {a, a, a}) = 4

10/18

Ingredient 2: Tighter Lower Bound Estimation

qf gf

C

B

A

A

A

A

D

E

v3

v4

v5

u1

u2

u4

u5

v1

v2 u3

b

a

a

a a

a

a

a

Graph q Graph g

A

A

I We propose anchor-aware label set-based lower bound lbLSaf by seperating the

cross edges from the unmapped parts: lbLSaf = mcf+
– Υ(LEC

(v1), LEC
(u1))+: Υ({b}, {}) = 1

– Υ(LEC
(v2), LEC

(u2))+: Υ({a}, {a}) = 0
– Υ(LEI

(qf̄), LEI
(gf̄))+: Υ({a}, {a, a}) = 1

– Υ(LV (qf̄), LV (gf̄)): Υ({A,B,C}, {A,A,E}) = 2

– lbLSaf = 5 > lbLSf = 4
I We prove that lbLSaf ≥ lbLSf holds for any mapping f 11/18

Ingredient 3: Efficient Lower Bound Computation

I In the best-first search, for a partial mapping f , we need to compute the lower
bound for all children h (i.e., one-vertex extension) of f

I The existing works compute the lower bound for each child h independently

– Total time complexity of O(|V (g)| × (|E(q)|+ |E(g)|))

I We propose an algorithm with total time complexity of O(|E(q)|+ |E(g)|), by
online constructing a data structure and conducting computation incrementally

12/18

Experimental Setting

I Datasets

– AIDS: an antivirus screen chemical compound dataset published by the
Developmental Therapeutics Program at NCI/NIH 5

– PubChem: a chemical compound dataset 6

Database D |D| Avg |V | Avg |E| Max |V | Max |E| #vlabels #elabels
AIDS 42,689 25.6 27.5 222 247 66 3

PubChem 23,903 48.3 50.8 88 92 10 3

I All algorithms are run in main memory, and run as single-thread algorithms

5https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz
6http://pubchem.ncbi.nlm.nih.gov: Compound 000975001 001000000.sdf

13/18

https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz
http://pubchem.ncbi.nlm.nih.gov

Index-free Graph Similarity Search

I Algorithms
– AStar+-LSa: our algorithm
– CSI GED7: depth-first search + edge mapping
– Inves8: online graph partitioning-based filtering

I To verify ged(q, g) ≤ τ , all the three algorithms first run LabelF for filtering
– That is, if the label-set based lower bound is larger than τ , then g is pruned

AStar
+
-LSa CSI_GED Inves

>24h

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1 3 5 7 9 11

P
ro

ce
ss

in
g

T
im

e
(s

)

τ=

AIDS

>48h

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 3 5 7 9 11

P
ro

ce
ss

in
g

T
im

e
(s

)

τ=

PubChem

Processing time for 100 random queries
7Karam Gouda and Mosab Hassaan. “CSI GED: An efficient approach for graph edit similarity computation”. In: Proc. of ICDE’16. 2016.
8Jongik Kim, Dong-Hoon Choi, and Chen Li. “Inves: Incremental Partitioning-Based Verification for Graph Similarity Search”. In: Proc. of

EDBT’19. 2019.
14/18

Index-based Filtering for Graph Similarity Search

I Filtering time ratio of Pars9: filtering time of Pars
total running time of AStar+-LSa

I Filtered candidate ratio of Pars: number of candidates filtered by Pars
total number of candidates generated by LabelF

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11

Fi
lte

rin
g

P
ow

er
 (%

)

τ=

Filtering time ratio
Filtered cand ratio

AIDS

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11

Fi
lte

rin
g

P
ow

er
 (%

)

τ=

Filtering time ratio
Filtered cand ratio

PubChem

Filtering effectiveness of Pars

9Xiang Zhao et al. “Efficient structure similarity searches: a partition-based approach”. In: VLDB J. 27.1 (2018).

15/18

Our Algorithms for Graph Similarity Search

AStar
+
-LSa AStar

+
-LS DFS

+
-LSa

oom

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1 3 5 7 9 11

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

τ=

AIDS

oom

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 3 5 7 9 11

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

τ=

PubChem

Processing time of our algorithms for 100 random queries

I AStar+-LSa and DFS+-LSa perform similarly
– For graph similarity search, most of the pairs (q, g) are dissimilar pairs
– We show in the paper that for dissimilar pairs, best-first search and depth-first

search have the same search space and thus similar running time

16/18

GED Computation

AStar
+
-LSa AStar

+
-LS DFS

+
-LSa CSI_GED

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10 15 20 25 30

TLE

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

|V|=

AIDS

oom

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10 15 20 25 30

TLE

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

|V|=

PubChem

Processing time for GED computation (ged = 9)

17/18

Conclusion

I We proposed an efficient algorithm AStar+-LSa to speed up GED verification,
which is achieved by three ingredients

– Don’t need to add dummy vertices to q or g
– Tighter lower bound estimation
– Efficient lower bound computation

I The existing indexing/filtering techniques become obsolete given our efficient
GED verification algorithm AStar+-LSa

I The source code of our algorithms will be available at
https://github.com/LijunChang/Graph_Edit_Distance.

18/18

https://github.com/LijunChang/Graph_Edit_Distance

