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Graph Similarity Search

I Given a database D = {g1, g2, g3, . . .} consisting of a set of vertex and/or edge
labeled graphs, graph similarity search aims to find all graphs in D that are similar
to a user-given query graph q.

– Here, inexact/similarity search is used
– Because exact graph search may find no or very few results due to erroneous data

entry, data noise or nature of the application
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Graph Edit Distance

I Graph edit distance (GED) is a widely used distance/similarity measure in graph
similarity search studies.1234

– GED is a metric
I Applicable to all types of graphs
I Captures the structural difference between graphs

– ged(q, g): minimum number of edit operations needed to transform q into g
I Vertex/Edge relabeling
I Edge insertion/deletion
I (Isolated) vertex insertion/deletion

1Xiang Zhao et al. “A Partition-Based Approach to Structure Similarity Search”. In: PVLDB 7.3 (2013).
2Yongjiang Liang and Peixiang Zhao. “Similarity Search in Graph Databases: A Multi-Layered Indexing Approach”. In: Proc. of ICDE’17. 2017.
3Xiang Zhao et al. “Efficient structure similarity searches: a partition-based approach”. In: VLDB J. 27.1 (2018).
4Jongik Kim, Dong-Hoon Choi, and Chen Li. “Inves: Incremental Partitioning-Based Verification for Graph Similarity Search”. In: Proc. of

EDBT’19. 2019.
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Graph Edit Distance
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I ged(q, g) = 5
– The following is a sequence of 5 edit operations that transform q into g
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Filtering-and-Verification

I Formally, the graph similarity search problem is to compute
{g ∈ D | ged(q, g) ≤ τ} for user-specified q and τ

– A naive approach is checking, for every g ∈ D, whether ged(q, g) ≤ τ
– This is expensive as deciding whether ged(q, g) ≤ τ is NP-complete

I Filtering-and-verification paradigm.
1. Candidate generation: cand ⊆ D

I ged(q, g) > τ for every g ∈ D\cand
I Filter out unpromising data graphs (possibly by probing an offline-constructed index)
I Based on pigeonhole principle: if there are τ + 1 disjoint substructures (e.g., path,

tree, subgraph) of q not appearing in g, then ged(q, g) > τ

2. Candidate verification
I Verify whether ged(q, g) ≤ τ , for every g ∈ cand
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Our Contribution: Speeding Up GED Verification

I The existing studies focus on generating a small candidate set (by designing
different index structures), while using an outdated algorithm A∗GED for GED
verification

I We propose an efficient algorithm AStar+-LSa to speed up GED verification,
which is orthogonal to the existing indexing/filtering techniques

I Our experimental results show that

– The existing indexing/filtering techniques either have very limited filtering power or
take a very long filtering time (e.g., may even longer than directly verifying all data
graphs by AStar+-LSa)

– Thus, the existing indexing/filtering techniques become obsolete given our efficient
GED verification algorithm AStar+-LSa

6/18



GED Computation Via Vertex Mapping

I ged(q, g) can be computed by enumerating vertex mappings from q to g.
– Vertex insertion can be encoded by mapping a dummy vertex to V (g)
– Vertex deletion can be encoded by mapping V (q) to a dummy vertex
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A search tree T compactly represents all vertex mappings from V (q) to V (g): fi is a partial

mapping, and beside f at level j is a pair (u, lbf ) where u ∈ V (g) is the vertex to which vj
maps and lbf is a lower bound of f
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Our GED Verification Algorithm AStar+-LSa

I AStar+-LSa conducts a best-first search of the search tree T , based on lower
bounds lbf of partial mappings f

– AStar+-LSa uses a fixed matching order of V (q)

I The efficiency of AStar+-LSa is achieved by three ingredients

1. Don’t need to add dummy vertices to q or g
2. Tighter lower bound estimation
3. Efficient lower bound computation
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Ingredient 1: Don’t Add Dummy Vertices

I We prove that if |V (q)| ≤ |V (g), then there is no vertex deletion in the optimal
sequence of edit operations that transform q into g

I W.l.o.g., we assume that |V (q)| = |V (g)|
– If |V (q)| < |V (g)|, then we can add |V (g)| − |V (q)| dummy vertices to q
– Thus, we don’t need to consider vertex insertion/deletion
– In implementation, we don’t add dummy vertices to q even if |V (q)| < |V (g)|

I Advantages of not considering vertex insertion/deletion

– Reduces the number of full mappings from ≈ (|V (g)|+ 1)|V (q)|+|V (g)| to |V (g)||V (q)|

– Simplies algorithm implementation
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Ingredient 2: Tighter Lower Bound Estimation
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I Consider the partial mapping f = {v1 7→ u1, v2 7→ u2}
I The existing algorithms use label set-based lower bound lbLSf

– mcf : the number of edit operations required to transform qf into gf by obeying f
– The vertex (resp. edge) label difference between the unmapped parts qf̄ and gf̄
– lbLSf = mcf + Υ

(
LV (qf̄ ), LV (gf̄ )

)
+ Υ

(
LE(qf̄ ), LE(gf̄ )

)
=

1 + Υ({A,B,C}, {A,A,E}) + Υ({a, a, b}, {a, a, a}) = 4
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Ingredient 2: Tighter Lower Bound Estimation
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I We propose anchor-aware label set-based lower bound lbLSaf by seperating the

cross edges from the unmapped parts: lbLSaf = mcf+
– Υ(LEC

(v1), LEC
(u1))+: Υ({b}, {}) = 1

– Υ(LEC
(v2), LEC

(u2))+: Υ({a}, {a}) = 0
– Υ(LEI

(qf̄ ), LEI
(gf̄ ))+: Υ({a}, {a, a}) = 1

– Υ(LV (qf̄ ), LV (gf̄ )): Υ({A,B,C}, {A,A,E}) = 2

– lbLSaf = 5 > lbLSf = 4
I We prove that lbLSaf ≥ lbLSf holds for any mapping f 11/18



Ingredient 3: Efficient Lower Bound Computation

I In the best-first search, for a partial mapping f , we need to compute the lower
bound for all children h (i.e., one-vertex extension) of f

I The existing works compute the lower bound for each child h independently

– Total time complexity of O(|V (g)| × (|E(q)|+ |E(g)|))

I We propose an algorithm with total time complexity of O(|E(q)|+ |E(g)|), by
online constructing a data structure and conducting computation incrementally
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Experimental Setting

I Datasets

– AIDS: an antivirus screen chemical compound dataset published by the
Developmental Therapeutics Program at NCI/NIH 5

– PubChem: a chemical compound dataset 6

Database D |D| Avg |V | Avg |E| Max |V | Max |E| #vlabels #elabels
AIDS 42,689 25.6 27.5 222 247 66 3

PubChem 23,903 48.3 50.8 88 92 10 3

I All algorithms are run in main memory, and run as single-thread algorithms

5https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz
6http://pubchem.ncbi.nlm.nih.gov: Compound 000975001 001000000.sdf
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Index-free Graph Similarity Search

I Algorithms
– AStar+-LSa: our algorithm
– CSI GED7: depth-first search + edge mapping
– Inves8: online graph partitioning-based filtering

I To verify ged(q, g) ≤ τ , all the three algorithms first run LabelF for filtering
– That is, if the label-set based lower bound is larger than τ , then g is pruned
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7Karam Gouda and Mosab Hassaan. “CSI GED: An efficient approach for graph edit similarity computation”. In: Proc. of ICDE’16. 2016.
8Jongik Kim, Dong-Hoon Choi, and Chen Li. “Inves: Incremental Partitioning-Based Verification for Graph Similarity Search”. In: Proc. of

EDBT’19. 2019.
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Index-based Filtering for Graph Similarity Search

I Filtering time ratio of Pars9: filtering time of Pars
total running time of AStar+-LSa

I Filtered candidate ratio of Pars: number of candidates filtered by Pars
total number of candidates generated by LabelF
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9Xiang Zhao et al. “Efficient structure similarity searches: a partition-based approach”. In: VLDB J. 27.1 (2018).
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Our Algorithms for Graph Similarity Search
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I AStar+-LSa and DFS+-LSa perform similarly
– For graph similarity search, most of the pairs (q, g) are dissimilar pairs
– We show in the paper that for dissimilar pairs, best-first search and depth-first

search have the same search space and thus similar running time

16/18



GED Computation
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Conclusion

I We proposed an efficient algorithm AStar+-LSa to speed up GED verification,
which is achieved by three ingredients

– Don’t need to add dummy vertices to q or g
– Tighter lower bound estimation
– Efficient lower bound computation

I The existing indexing/filtering techniques become obsolete given our efficient
GED verification algorithm AStar+-LSa

I The source code of our algorithms will be available at
https://github.com/LijunChang/Graph_Edit_Distance.

18/18

https://github.com/LijunChang/Graph_Edit_Distance

