
Page 1

 1

Chang · Qin

Springer Series in the Data Sciences

Lijun Chang · Lu Qin

Cohesive Subgraph Computation over Large Sparse Graphs
Algorithms, Data Structures, and Programming Techniques

Springer Series in the Data Sciences

Cohesive Subgraph
Computation
over Large Sparse
Graphs

Lijun Chang · Lu Qin

Mathematics

SSDS

Cohesive Subgraph Com
putation over Large Sparse Graphs

Algorithms, Data Structures,
and Programming Techniques

Th is book is considered the fi rst extended survey on algorithms and techniques for
effi cient cohesive subgraph computation. With rapid development of information
technology, huge volumes of graph data are accumulated. An availability of rich graph
data not only brings great opportunities for realizing big values of data to serve key
applications, but also brings great challenges in computation. Using a consistent ter-
minology, the book gives an excellent introduction to the models and algorithms for
the problem of cohesive subgraph computation. Th e materials of this book are well
organized from introductory content to more advanced topics while also providing
well-designed source codes for most algorithms described in the book.

Th is is a timely book for researchers who are interested in this topic and effi cient data
structure design for large sparse graph processing. It is also a guideline book for new
researchers to get to know the area of cohesive subgraph computation.

9 7 8 3 0 3 0 0 3 5 9 8 3

ISBN 978-3-030-03598-3

Cohesive Subgraph
Computation over Large
Sparse Graphs

Lijun Chang Lu Qin
lijun.chang@sydney.edu.au lu.qin@uts.edu.au

Slides: lijunchang.github.io/icde19_tutorial.pdf

Page 2

Outline

Background

Core Decomposition

Densest Subgraph Computation

Higher-order Dense Subgraph Computation

Future Directions

Page 3

Graphs are Everywhere

Social networks Web graphs

Graph of texts Internet of things

Page 4

Graph Model is Simple

– A graph G(V, E) consists of a set of vertices V and a set of edges E

We are interested in analyzing the topological structure of real graphs!

Page 5

Real Graphs are not Random Graphs

– Real graphs are not random graphs (e.g., the Erdos-Renyi
random graph model), but have fascinating patterns and
properties.
■ The degree distribution is skewed, following a power-law

Page 6

Real Graphs are not Random Graphs

– Real graphs are not random graphs (e.g., the Erdos-Renyi
random graph model), but have fascinating patterns and
properties.
■ Real graphs are globally sparse but locally dense

■ The entire graph is sparse, but there are groups of vertices with high
concentration of edges within them

We are interested in finding “dense” subgraphs from large real graphs!

Page 7

Informal Problem Definition

– Given a large sparse graph (e.g., social network,
communication network, information network, biological
network), find subgraphs that are densely connected or build a
hierarchical structure for all dense subgraphs.

Page 8

Applications of Finding Dense Subgraphs

– It has applications in any context that information can be
encoded as a graph

– For example, dense subgraphs correspond to
– Communities in social networks
– Groups of web pages dealing with the same or related topics in World

Wide Web
– Groups of proteins having the same specific function within the cell in

biology
– Functional modules such as cycles and pathways in metabolic networks
– Compartments in food webs
– Stories in twitter data
– ……

Page 9

Focus of this Tutorial

– In this tutorial, we mainly focus on the fundamental technical
developments of efficient dense subgraph computation
– Efficiency is an important issue when analysing large graphs

Page 10

Where to Find Large Real Graphs?

– Stanford Network Analysis Project (SNAP) [Leskovec and Krevl
2014]
■ From medium to large graphs. It includes social networks, web graphs,

road networks, internet networks, citation networks, collaboration
networks, and communication networks.

■ com-Friendster: 65 million vertices, 1.8 billion edges.

– Laboratory for Web Algorithmics (LAW) [Boldi and Vigna
2004]
■ Large graphs with size up to 1 billion vertices and tens of billions of

edges. The networks are mainly web graphs and social networks.
■ eu-2015: 1 billion vertices, 91 billion edges.

– Network Repository [Rossi and Ahmed 2015]
■ Thousands of graphs with up to billions of vertices and tens of billions of

edges.

Page 11

How to Store Large Sparse Graph in Memory?

– Graph representation
■ Adjacency Matrix

■ Adjacency Lists

■ Adjacency Array or Compressed Sparse Row (CSR)

■ Cannot store graph with over 105 vertices

■ Better, but requires 4m integers

■ Represents an undirected graph by 2m+n+O(1) integers

n: the number of vertices
m: the number of undirected edges

Page 12

The Adjacency Array (CSR) Representation

– An example graph

– Its adjacency array representation

Neighbors of v3

Page 13

Cohesive/Dense Subgraph Computation

– Given a graph 𝐺 = 𝑉, 𝐸 with vertices 𝑉 and edges 𝐸 ⊆
𝑉×𝑉, we aim to efficiently compute dense subgraphs in 𝐺.
– Either compute the subgraph with the highest density, or compute all

(maximal) subgraphs whose density are larger than a threshold (e.g., k)
– n = |V|
– m = |E|

– How to measure the density of a (sub)-graph?
– Edge ratio (2m/(n(n-1))): ratio of the number of edges to the maximum

possible number of edges
• However, small graphs usually have higher edge ratio. E.g., triangle

– Average degree (2m/n)
– Minimum degree

Page 14

Cohesiveness Measures

– Minimum degree: core decomposition
– Minimum number of edges each vertex participates in

– Average degree: densest subgraph
– Average number of edges each vertex participates in

– Higher order
■ Minimum number of triangles each edge participates in: truss

decomposition
■ Average number of k-cliques each vertex participates in: k-clique

densest subgraph

– Edge connectivity
– …

Page 15

Outline

Background

Core Decomposition

Densest Subgraph Computation

Higher-order Dense Subgraph Computation

Future Directions

Page 16

Core Decomposition

– k-core: the maximal subgraph in which every vertex has
degree at least k within the subgraph

– Core number core(u) of a vertex: the largest k for which the k-
core contains the vertex

[Malliaros et al 2016]

Page 17

Core Decomposition

– Core decomposition: compute the core numbers of all vertices
– k-core is the subgraph induced by all vertices with core

numbers at least k

[Malliaros et al 2016]

Page 18

K-core size Distribution

Page 19

The Peeling Algorithm

– Basic idea for computing k-core: iteratively remove all vertices
whose degree are smaller than k.
– Core decomposition: iterate the process for k values increasing from 1

– Naively going though all vertices to find a vertex of degree
smaller than k in each iteration will result in O(n2) time
algorithm

1 2 3

4

5

6

7

1 2

2-core

3

3-core

Page 20

A Linear-time Implementation

– Using a data structure to dynamically maintain the vertices of a specific
degree, results in O(m) algorithm

Remove v11

...

v8

v5

v3 v2 v1
v4

v10 v9 v7 v6

head s

10

4

3

2

1

0

Page 21

The Peeling Algorithm

– To compute k-core, we can remove an arbitrary vertex among
all vertices of degree smaller than k.

– In practice, the peeling algorithm usually refers to the algorithm
that iteratively removes the vertex with the smallest degree.
– The previous data structure still can implement this algorithm to run in

O(m) time.

Page 22

Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– 𝛿(𝐺) is the maximum value among the minimum vertex degrees of all

subgraphs of 𝐺
• Each subgraph of 𝐺 has a vertex with small degree (i.e., ≤ 𝛿(𝐺))
• There exists a subgraph with minimum degree 𝛿(𝐺)

– 𝛿(𝐺) equals the largest core number in core decomposition
– 𝛿(𝐺) ≤ 	 2𝑚 + 𝑛�

– 𝛿(𝐺) measures how sparse a graph is

Page 23

Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– It computes a degeneracy ordering of vertices of 𝐺

– A permutation (v1, v2, …, vn) of all vertices of G is a degeneracy
ordering of G if every vertex vi has the minimum degree in the
subgraph induced by {vi,…,vn}.

– If we orient the graph according to a degeneracy ordering, then the
maximum out-degree of the resulting directed graph is 𝛿(𝐺)

…

Maximum degree: n-1

…

Maximum out-degree: 1

Page 24

Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– It computes a degeneracy ordering of vertices of 𝐺
– It computes an approximate value for the arboricity 𝛼 𝐺 	of a

graph 𝐺
– 𝛼 𝐺 is the minimum number of forests needed to cover all edges of a

graph
– 𝛼 𝐺 is frequently used in analyzing time complexities of algorithms,

especially triangle enumeration/counting related algorithms
– Degeneracy 𝛿(𝐺) tightly bounds the arboricity 𝛼 𝐺 of a graph:
𝛼 𝐺 ≤ 𝛿 𝐺 < 2×𝛼(𝐺)

Page 25

Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– It computes a degeneracy ordering of vertices of 𝐺
– It computes an approximate value for the arboricity 𝛼 𝐺 	of a

graph 𝐺
– It computes an approximate solution to the densest subgraph

(will be covered later)

Page 26

H-index-based Local Algorithm

– The peeling algorithm is inherently sequential, and has limited
parallelizability.

– There is an H-index-based local algorithm that works well in
practice for different settings
– e.g., parallel setting, distributed setting, I/O-efficient setting, in-memory

– Given a multi-set S of positive numbers, h-index(S) is the
largest integer k such that | 𝑠 ∈ 𝑆 ∶ 𝑠	 ≥ 𝑘 | ≥ 𝑘
– E.g. h-index({1,1,1,1}) = 1
– h-index({4,3,2,1}) = 2

Page 27

H-index-based Local Algorithm

– Fact 1: let 𝐶< = 𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then 𝑐𝑜𝑟𝑒 𝑢 =
ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<)
– Let k = 𝑐𝑜𝑟𝑒 𝑢 , 𝑢 must have at least k neighbors in the k-core.

– Fact 2: let 𝑐𝑜𝑟𝑒(𝑣) be an upper bound of 𝑐𝑜𝑟𝑒 𝑣 and 𝐶<̅ =
𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<̅) is an upper bound

of 𝑐𝑜𝑟𝑒 𝑢

u

v

w

…k-core

𝑐𝑜𝑟𝑒(𝑣) ≥ 𝑘

𝑐𝑜𝑟𝑒(𝑤) ≥ 𝑘

Page 28

H-index-based Local Algorithm

– Fact 1: let 𝐶< = 𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then 𝑐𝑜𝑟𝑒 𝑢 = ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<)
– Fact 2: let 𝐶<̅ = 𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then 𝑐𝑜𝑟𝑒 𝑢 ≤ ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<̅)

– Algorithm:
– Initialize 𝑐𝑜𝑟𝑒 𝑣 to be the degree of v for all vertices
– Repeat until converge: reassign 𝑐𝑜𝑟𝑒 𝑢 as ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<̅) for all

vertices

– h-index is monotone
– The upper bounds cannot increase
– The upper bounds converge to the true core numbers.

– Optimization: do not need to update the upper bound for
every vertex in each iteration

Page 29

H-index-based Local Algorithm

Page 30

H-index-based Local Algorithm

– Empirical in-memory running time comparison (in seconds)

– The running time highly depends on the processing order of
vertices
– E.g., if processing vertices in the degeneracy ordering, then the time

complexity is linear

Page 31

Other Works on Core Decomposition

– Core decomposition for dynamic graph
– How to maintain the core number when graph changes?
– [Zhang et al 2017]

– Core decomposition for uncertain graph
– [Bonchi et al 2014]

– Core decomposition for directed graph
– [Giatsidis et al 2011]

Page 32

Outline

Background

Core Decomposition

Densest Subgraph Computation

Higher-order Dense Subgraph Computation

Future Directions

Page 33

Densest Subgraph

– Find the subset S of vertices in G where the induced subgraph
of G by S has the largest average degree among all subsets

Page 34

Greedy-based Approximation Algorithm

– Iteratively remove the vertex with the minimum degree from the
graph
– We obtain n subgraphs during the process
– Return the one with the maximum average degree as the result

– Time complexity: O(m)

(This is the same as the previous peeling algorithm)

Page 35

Greedy-based Approximation Algorithm

– Approximation ratio
– Density 𝜌 𝑆 of S: total number of edges divided by total number of

vertices (half of the average degree)
– Upper bound of the maximum density 𝜌 𝑆∗

• 𝜌 𝑆∗ ≤ 𝑑OPQ(𝑆∗) ≤ 𝛿(𝐺): recall 𝛿(𝐺) is the maximum value
among the minimum vertex degrees of all subgraphs of 𝐺

– Let’s look at the 𝛿 𝐺 -core: recall there exists a subgraph with minimum
degree 𝛿(𝐺)

• Its density is at least 𝛿(𝐺)/2 ≥ 𝜌 𝑆∗ /2
– The approximation ratio of the greedy algorithm is 1/2

Page 36

Goldberg’s Algorithm for Densest Subgraph

– Decision version of the densest subgraph problem: Is there a
subgraph S with density larger than 𝜆 ?
– 𝜌 𝑆 : density of S (half of the average degree)
– 𝑆̅:	vertices of G not in S
– 𝐸 𝑆, 𝑆̅ : edges between S and 𝑆̅

[Goldberg 1984]

S 𝑆̅

Page 37

Goldberg’s Algorithm for Densest Subgraph
[Goldberg 1984]

§ 𝜆 < 𝜌 𝑆∗ iff the
minimum cut of 𝐺T is of
value smaller than 2m

§ 𝜆 ≥ 𝜌 𝑆∗ iff the
minimum cut of 𝐺T is of
value exactly 2m

There is S s.t.

𝐺T
[Gionis and Tsourakakis 2015]

Page 38

Goldberg’s Algorithm for Densest Subgraph

– Thus, we can do binary search on 𝜆.
– When 𝜆 is smaller than but very close to 𝜌(𝑆∗), then the minimum

cut of the graph 𝐺T corresponds to a densest subgraph of 𝐺

– But 𝜆 is a fractional number, when to stop?
– For any two subgraphs S1 and S2 with 𝜌 𝑆U > 𝜌 𝑆W , it holds

that 𝜌 𝑆U − 𝜌(𝑆W) ≥
U

Q(QXU)

– Time complexity of Goldberg’s algorithm
– 𝑂(log 𝑛)	minimum cut computations, each for a different 𝜆	value
– By using parametric maximum flow techniques, can be

implemented to run in 𝑂(n ^ m ^ log Q
`

O
)	time

[Goldberg 1984]

Page 39

Data Reduction for Densest Subgraph Computation

– Goldberg’s algorithm cannot be directly applied to large
graphs, due to the high time complexity

– We can reduce the graph instance for Goldberg’s algorithm
– Real-world graphs are power-law graphs, many vertices are of small

degree and thus cannot be in the densest subgraph

– The density of the 𝛿 𝐺 -core is at least 𝛿(𝐺)/2
– Thus, we can remove all vertices whose degree are smaller than 𝛿(𝐺)/2

Page 40

Data Reduction for Densest Subgraph Computation

– Thus, to exactly compute the densest subgraph, we only need to
consider the 𝛿 𝐺 /2-core, rather than the entire graph

Page 41

Data Reduction for Densest Subgraph Computation

– In practice, we can first run the greedy algorithm to get an
approximate densest subgraph S, and then run Goldberg’s
algorithm on the 𝜌(𝑆) -core of G

Page 42

Other Works on Densest Subgraph Computation

– The densest subgraph can also be computed by linear
programming
– [Charikar 2000]

– Densest subgraph computation in dynamic graphs
– [Epasto et al 2015]

– Locally densest subgraph
– [Qin et al 2015]

– Density-friendly graph decomposition
– [Danish et al 2017]

Page 43

Outline

Background

Core Decomposition

Densest Subgraph Computation

Higher-order Dense Subgraph Computation

Future Directions

Page 44

Higher-order Structures

– Previous, we focused on vertices and edges

– Now, let’s consider higher-order structures, k-cliques (complete
graphs with k vertices), which usually will find denser subgraphs
– A vertex is a 1-clique
– An edge is a 2-clique
– A triangle is a 3-clique

– Higher-order core decomposition
– Truss decomposition
– Nucleus decomposition

– Higher-order densest subgraph

Page 45

Truss Decomposition

– k-truss: the maximal subgraph in which every edge participates
in at least k triangles

– k-core: the maximal subgraph in which every vertex
participates in at least k edges

– Like k-cores, k-trusses are nested

3-truss

Page 46

Truss Decomposition

– Truss number truss(u,v) of an edge: the largest k for which the
k-truss contains the edge

– Truss decomposition: compute the truss number for each edge
■ k-truss is the subgraph induced by all edges with truss

numbers at least k

Truss decomposition

Page 47

Computing Truss Decomposition

– Extend the peeling algorithm
■ Iteratively remove the edge that participates in the fewest

number of triangles
■ How to efficiently compute the number of triangles for each

vertex?
■ How to efficiently update the number of triangles after

deleting one edge?

■ This needs an efficient triangle enumeration algorithm.

Page 48

Triangle Enumeration

– How to efficiently enumerate all triangles in a graph?

– How about enumerating wedge (v,u,w) and check the existence
of edge (v,w)?
– The time complexity will be ∑ (𝑑 𝑢)W�

<∈b

• This is higher than 𝑚
c
`, which bounds the maximum number of

triangles
• E.g., consider a star graph

v

u

w

Page 49

Triangle Enumeration

– We can improve the time complexity by orienting the input
graph

– How about enumerating wedge (v,u,w) and check the existence
of edge (v,w)?
– The time complexity will be ∑ (𝑑d 𝑢)W�

<∈b
– This can be small if we orient the graph smartly

v

u

w
Oriented graph

Page 50

Triangle Enumeration

v

u

w

How about enumerating wedge (v,u,w)
and check the existence of edge (v,w)?

How to check the existence of an edge?

Recall that 𝛿(𝐺) ≤ 	 2𝑚 + 𝑛�

Hash table!

The total number of wedges checked is 𝑂(𝑚
c
`)

Page 51

Triangle Enumeration

– Hash table has both space and time overhead. Can we avoid
the hash-table?
– Arrange the edge-existence checking in a smart way.

– This is to check whether u is connected to its 2-hop out-neighbor w
– All such checks for the same u are grouped together.
– The time complexity is no longer ∑ (𝑑d 𝑢)W�

<∈b
• but ∑ (𝑑d 𝑣 ×𝑑X 𝑣)�

e∈b

Yes!

w

u

v

Hash table is not needed!

Page 52

Triangle Enumeration

decreasing

𝛼(𝐺) ≤
2𝑚 + 𝑛�

2

As computing degeneracy ordering takes a significant portion of the total time,
degree decreasing or increasing ordering is used in practice.

Page 53

Computing Truss Decomposition

– Extend the peeling algorithm
■ Iteratively remove the edge that participates in the fewest

number of triangles
■ How to efficiently compute the number of triangles for each

vertex?
■ Enumerate all triangles by the algorithm in previous slide

■ How to efficiently update the number of triangles after
deleting one edge (u,v)?
■ Intersect the neighbor-sets of u and v in min d(u), d v

time

– The algorithm runs in 𝑂 𝛼 𝐺 ×𝑚 time
■ 𝛼 𝐺 is the arboricity of 𝐺, and is small for real graphs

Hash table is needed here!

Page 54

Nucleus Decomposition

– k-(r,s)-nucleus: the maximal union g of s-cliques in G such that
for each r-clique C in g, there are at least k s-cliques in g
containing C
– k-core is a k-(1,2)-nucleus

– k-truss is a k-(2,3)-nucleus

triangles

edges

Iteratively remove vertices with fewer than k edges containing the vertex,
the remaining edges form the k-core

Iteratively remove edges with fewer than k triangles containing the edge,
the remaining triangles form the k-truss

Iteratively remove r-cliques with fewer than k s-cliques containing the r-clique,
the remaining s-cliques form the k-(r,s)-nucleus?

Yes!

Page 55

Nucleus Decomposition

– Iteratively remove r-cliques with fewer than k s-cliques
containing the r-clique, the remaining s-cliques form the k-(r,s)-
nucleus

– Let’s consider the hyper-graph 𝔾 = 𝕍, 𝔼
– 𝕍 is the set of r-cliques in 𝐺
– 𝔼 is the set of s-cliques in 𝐺 (hyper-edges)
– Each hyper-edge (s-clique) in 𝔾 connects to all r-cliques contained in the

s-clique
– In truss decomposition, r = 2 and s = 3

Page 56

k-clique Enumeration

– How to efficiently enumerate k-cliques?
– Extend the graph orientation-based triangle enumeration

algorithm
– Orient the input undirected graph to be a directed graph
– For each vertex u in G

• Enumerate (k-1)-cliques in the subgraph of G induced by u’s out-
neighbors

Each k-clique of G will be enumerated exactly once!

Page 57

k-clique Enumeration

– All k-cliques can be enumerated in 𝑂(𝑘× 𝛼 𝐺 mXW×𝑚) total time

Page 58

Higher-order Densest Subgraph

– k-clique densest subgraph: find the subgraph g of G, such that
the average number of k-cliques per vertex in g is the largest
among all subgraphs of G

– The peeling algorithm can be extended to find a k-
approximate k-clique densest subgraph

– The Goldberg’s algorithm can be extended to find the k-clique
densest subgraph exactly

Page 59

Outline

Background

Core Decomposition

Densest Subgraph Computation

Higher-order Dense Subgraph Computation

Future Directions

Page 60

Future Directions

– How to do truss decomposition without hash tables?

– What is the relationship between dense subgraphs with
different density (average degree) values?

– How to scale up nucleus decomposition and k-clique densest
subgraphs for large k values?

– How to effectively and efficiently incorporate other information
(such as attributes, temporal) into dense subgraph computation?

Page 61

References

1. [Angel et al. 2012] A. Angel, N. Koudas, N. Sarkas, and D. Srivastava. Dense
subgraph main- tenance under streaming edge weight updates for real-time story
identification. PVLDB, 5(6):574–585, 2012.

2. [Batagelj and Zaversnik 2003] V. Batagelj and M. Zaversnik. An o(m) algorithm for
cores decomposition of networks. CoRR, cs.DS/0310049, 2003.

3. [Benson et al. 2016] A. Benson, D. Gleich, andJ. Leskovec. Higher-order organization
of complex networks. Science, 353(6295):163–166, 2016.

4. [Boldi and Vigna 2004] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

5. [Bonchi et al 2014] F. Bonchi, F. Gullo, A. Kaltenbrunner, Y. Volkovich: Core
decomposition of uncertain graphs. KDD’14: 1316-1325

6. [Charikar 2000] M. Charikar. Greedy approximation algorithms for finding dense
components in a graph. In Proc. APPROX’00, pages 84–95, 2000.

7. [Chiba and Nishizeki 1985] N. Chiba and T. Nishizeki. Arboricity and subgraph
listing algorithms. SIAM J. Comput., 14(1):210–223, 1985.

8. [Cohen 2008] J. Cohen. Trusses: Cohesive subgraphs for social network analysis,
2008.

Page 62

References (cont’)

9. [Danish et al 2018] M. Danisch, O. Balalau, and M. Sozio. Listing k-cliques in sparse
real-world graphs. In Proc. of WWW’18, 2018.

10. [Danish et al 2017] M. Danisch, T.-H. H. Chan, M. Sozio: Large Scale Density-friendly
Graph Decomposition via Convex Programming. WWW’17: 233-242

11. [Epasto et al 2015] A. Epasto, S. Lattanzi, M. Sozio: Efficient Densest Subgraph
Computation in Evolving Graphs. WWW’15: 300-310

12. [Gallo et al 1989] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric
maximum flow algorithm and applications. SIAM J. Comput., 18(1):30–55, 1989.

13. [Giatsidis et al 2011] C. Giatsidis, D. M. Thilikos, M. Vazirgiannis: D-cores:
Measuring Collaboration of Directed Graphs Based on Degeneracy. ICDM’11: 201-
210

14. [Gionis and Tsourakakis 2015] A. Gionis, C. E. Tsourakakis: Dense Subgraph
Discovery: KDD 2015 tutorial. KDD’15: 2313-2314

15. [Goldberg 1984] A. V. Goldberg. Finding a maximum density subgraph. Technical
report, Berkeley, CA, USA, 1984

16. [Leskovec and Krevl 2014] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection. http: //snap.stanford.edu/data, June 2014.

Page 63

References (cont’)

17. [Malliaros et al 2016] F. D. Malliaros, A. N. Papadopoulos, M. Vazirgiannis: Core
Decomposition in Graphs: Concepts, Algorithms and Applications. EDBT’16: 720-721

18. [Ortmann and Brandes 2014] M. Ortmann and U. Brandes. Triangle listing
algorithms: Back from the diversion. In Proc. of ALENEX’14, pages 1–8, 2014.

19. [Qin et al 2015] L. Qin, R. Li, L. Chang, and C. Zhang. Locally densest subgraph
discovery. In Proc. of KDD’15, pages 965–974, 2015.

20. [Rossi and Ahmed 2015] R. A. Rossi and N. K. Ahmed. The network data repository
with interactive graph analytics and visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

21. [Sariyuce and Pinar 2016] A. E. Sariyu	̈ce and A. Pinar. Fast hierarchy construction
for dense subgraphs. PVLDB, 10(3):97–108, 2016.

22. [Tsourakakis 2015] C. E. Tsourakakis. The k-clique densest subgraph problem. In
Proc. of WWW’15, pages 1122–1132, 2015.

23. [Zhang et al 2017] Y. Zhang, J. X. Yu, Y. Zhang, L. Qin: A Fast Order-Based
Approach for Core Maintenance. ICDE’17: 337-348

Page 64

 1

Chang · Qin

Springer Series in the Data Sciences

Lijun Chang · Lu Qin

Cohesive Subgraph Computation over Large Sparse Graphs
Algorithms, Data Structures, and Programming Techniques

Springer Series in the Data Sciences

Cohesive Subgraph
Computation
over Large Sparse
Graphs

Lijun Chang · Lu Qin

Mathematics

SSDS

Cohesive Subgraph Com
putation over Large Sparse Graphs

Algorithms, Data Structures,
and Programming Techniques

Th is book is considered the fi rst extended survey on algorithms and techniques for
effi cient cohesive subgraph computation. With rapid development of information
technology, huge volumes of graph data are accumulated. An availability of rich graph
data not only brings great opportunities for realizing big values of data to serve key
applications, but also brings great challenges in computation. Using a consistent ter-
minology, the book gives an excellent introduction to the models and algorithms for
the problem of cohesive subgraph computation. Th e materials of this book are well
organized from introductory content to more advanced topics while also providing
well-designed source codes for most algorithms described in the book.

Th is is a timely book for researchers who are interested in this topic and effi cient data
structure design for large sparse graph processing. It is also a guideline book for new
researchers to get to know the area of cohesive subgraph computation.

9 7 8 3 0 3 0 0 3 5 9 8 3

ISBN 978-3-030-03598-3

Page 65

Slides: lijunchang.github.io/icde19_tutorial.pdf

Page 66

PhD Recruitment at The University of Sydney

– Duration: 3-4 years

– Scholarship:
– Stipend: $27,082
– Fee scholarship: $44,500

– English requirement
– IELTS: overall 6.5, and section minimum 6

Lijun.Chang@sydney.edu.au

