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Graphs are Everywhere

Social networks Web graphs

Graph of texts Internet of things
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Graph Model is Simple

– A graph G(V, E) consists of a set of vertices V and a set of edges E

We are interested in analyzing the topological structure of real graphs!
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Real Graphs are not Random Graphs

– Real graphs are not random graphs (e.g., the Erdos-Renyi 
random graph model), but have fascinating patterns and 
properties.
■ The degree distribution is skewed, following a power-law
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Real Graphs are not Random Graphs

– Real graphs are not random graphs (e.g., the Erdos-Renyi 
random graph model), but have fascinating patterns and 
properties.
■ Real graphs are globally sparse but locally dense

■ The entire graph is sparse, but there are groups of vertices with high 
concentration of edges within them

We are interested in finding “dense” subgraphs from large real graphs!
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Informal Problem Definition

– Given a large sparse graph (e.g., social network, 
communication network, information network, biological 
network), find subgraphs that are densely connected or build a
hierarchical structure for all dense subgraphs.
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Applications of Finding Dense Subgraphs

– It has applications in any context that information can be 
encoded as a graph

– For example, dense subgraphs correspond to
– Communities in social networks
– Groups of web pages dealing with the same or related topics in World 

Wide Web
– Groups of proteins having the same specific function within the cell in 

biology
– Functional modules such as cycles and pathways in metabolic networks
– Compartments in food webs
– Stories in twitter data
– ……
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Focus of this Tutorial

– In this tutorial, we mainly focus on the fundamental technical
developments of efficient dense subgraph computation
– Efficiency is an important issue when analysing large graphs
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Where to Find Large Real Graphs?

– Stanford Network Analysis Project (SNAP) [Leskovec and Krevl 
2014]
■ From medium to large graphs. It includes social networks, web graphs, 

road networks, internet networks, citation networks, collaboration 
networks, and communication networks.

■ com-Friendster: 65 million vertices, 1.8 billion edges.

– Laboratory for Web Algorithmics (LAW) [Boldi and Vigna 
2004]
■ Large graphs with size up to 1 billion vertices and tens of billions of 

edges. The networks are mainly web graphs and social networks.
■ eu-2015: 1 billion vertices, 91 billion edges.

– Network Repository [Rossi and Ahmed 2015]
■ Thousands of graphs with up to billions of vertices and tens of billions of 

edges.
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How to Store Large Sparse Graph in Memory?

– Graph representation
■ Adjacency Matrix

■ Adjacency Lists

■ Adjacency Array or Compressed Sparse Row (CSR)

■ Cannot store graph with over 105 vertices

■ Better, but requires 4m integers

■ Represents an undirected graph by 2m+n+O(1) integers

n: the number of vertices
m: the number of undirected edges
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The Adjacency Array (CSR) Representation

– An example graph

– Its adjacency array representation

Neighbors of v3
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Cohesive/Dense Subgraph Computation

– Given a graph 𝐺 = 𝑉, 𝐸 with vertices 𝑉 and edges 𝐸 ⊆
𝑉×𝑉,  we aim to efficiently compute dense subgraphs in 𝐺.
– Either compute the subgraph with the highest density, or compute all 

(maximal) subgraphs whose density are larger than a threshold (e.g., k)
– n = |V|
– m = |E|

– How to measure the density of a (sub)-graph?
– Edge ratio (2m/(n(n-1))): ratio of the number of edges to the maximum 

possible number of edges
• However, small graphs usually have higher edge ratio. E.g., triangle

– Average degree (2m/n)
– Minimum degree
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Cohesiveness Measures

– Minimum degree: core decomposition
– Minimum number of edges each vertex participates in

– Average degree: densest subgraph
– Average number of edges each vertex participates in

– Higher order
■ Minimum number of triangles each edge participates in: truss 

decomposition
■ Average number of k-cliques each vertex participates in: k-clique 

densest subgraph

– Edge connectivity
– …
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Core Decomposition

– k-core: the maximal subgraph in which every vertex has 
degree at least k within the subgraph

– Core number core(u) of a vertex: the largest k for which the k-
core contains the vertex

[Malliaros et al 2016]
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Core Decomposition

– Core decomposition: compute the core numbers of all vertices
– k-core is the subgraph induced by all vertices with core 

numbers at least k

[Malliaros et al 2016]
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K-core size Distribution
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The Peeling Algorithm

– Basic idea for computing k-core: iteratively remove all vertices 
whose degree are smaller than k.
– Core decomposition: iterate the process for k values increasing from 1

– Naively going though all vertices to find a vertex of degree 
smaller than k in each iteration will result in O(n2) time 
algorithm

1 2 3

4

5

6

7

1 2

2-core

3

3-core
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A Linear-time Implementation

– Using a data structure to dynamically maintain the vertices of a specific 
degree, results in O(m) algorithm

Remove v11

...

v8

v5

v3 v2 v1
v4

v10 v9 v7 v6

head s

10

4

3

2

1

0
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The Peeling Algorithm

– To compute k-core, we can remove an arbitrary vertex among 
all vertices of degree smaller than k.

– In practice, the peeling algorithm usually refers to the algorithm 
that iteratively removes the vertex with the smallest degree.
– The previous data structure still can implement this algorithm to run in 

O(m) time.
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Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– 𝛿(𝐺) is the maximum value among the minimum vertex degrees of all 

subgraphs of 𝐺
• Each subgraph of 𝐺 has a vertex with small degree (i.e., ≤ 𝛿(𝐺))
• There exists a subgraph with minimum degree 𝛿(𝐺)

– 𝛿(𝐺) equals the largest core number in core decomposition
– 𝛿(𝐺) ≤ 	 2𝑚 + 𝑛�

– 𝛿(𝐺) measures how sparse a graph is
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Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– It computes a degeneracy ordering of vertices of 𝐺

– A permutation (v1, v2, …, vn) of all vertices of G is a degeneracy 
ordering of G if every vertex vi has the minimum degree in the 
subgraph induced by {vi,…,vn}.

– If we orient the graph according to a degeneracy ordering, then the 
maximum out-degree of the resulting directed graph is 𝛿(𝐺)

…

Maximum degree: n-1

…

Maximum out-degree: 1
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Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– It computes a degeneracy ordering of vertices of 𝐺
– It computes an approximate value for the arboricity 𝛼 𝐺 	of a 

graph 𝐺
– 𝛼 𝐺 is the minimum number of forests needed to cover all edges of a 

graph
– 𝛼 𝐺 is frequently used in analyzing time complexities of algorithms, 

especially triangle enumeration/counting related algorithms
– Degeneracy 𝛿(𝐺) tightly bounds the arboricity 𝛼 𝐺 of a graph: 
𝛼 𝐺 ≤ 𝛿 𝐺 < 2×𝛼(𝐺)
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Other Applications of the Peeling Algorithm

– It computes the degeneracy 𝛿(𝐺) of a graph 𝐺
– It computes a degeneracy ordering of vertices of 𝐺
– It computes an approximate value for the arboricity 𝛼 𝐺 	of a 

graph 𝐺
– It computes an approximate solution to the densest subgraph 

(will be covered later)
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H-index-based Local Algorithm

– The peeling algorithm is inherently sequential, and has limited 
parallelizability.

– There is an H-index-based local algorithm that works well in
practice for different settings
– e.g., parallel setting, distributed setting, I/O-efficient setting, in-memory

– Given a multi-set S of positive numbers, h-index(S) is the 
largest integer k such that | 𝑠 ∈ 𝑆 ∶ 𝑠	 ≥ 𝑘 | ≥ 𝑘
– E.g. h-index({1,1,1,1}) = 1
– h-index({4,3,2,1}) = 2
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H-index-based Local Algorithm

– Fact 1: let 𝐶< = 𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then 𝑐𝑜𝑟𝑒 𝑢 =
ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<)
– Let k = 𝑐𝑜𝑟𝑒 𝑢 , 𝑢 must have at least k neighbors in the k-core.

– Fact 2: let 𝑐𝑜𝑟𝑒(𝑣) be an upper bound of 𝑐𝑜𝑟𝑒 𝑣 and 𝐶<̅ =
𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<̅) is an upper bound 

of 𝑐𝑜𝑟𝑒 𝑢

u

v

w

…k-core

𝑐𝑜𝑟𝑒(𝑣) ≥ 𝑘

𝑐𝑜𝑟𝑒(𝑤) ≥ 𝑘
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H-index-based Local Algorithm

– Fact 1: let 𝐶< = 𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then 𝑐𝑜𝑟𝑒 𝑢 = ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<)
– Fact 2: let 𝐶<̅ = 𝑐𝑜𝑟𝑒 𝑣 : 𝑣 ∈ 𝑁 𝑢 , then 𝑐𝑜𝑟𝑒 𝑢 ≤ ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<̅)

– Algorithm:
– Initialize 𝑐𝑜𝑟𝑒 𝑣 to be the degree of v for all vertices
– Repeat until converge: reassign 𝑐𝑜𝑟𝑒 𝑢 as ℎ−𝑖𝑛𝑑𝑒𝑥(𝐶<̅) for all 

vertices

– h-index is monotone
– The upper bounds cannot increase
– The upper bounds converge to the true core numbers.

– Optimization: do not need to update the upper bound for 
every vertex in each iteration
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H-index-based Local Algorithm
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H-index-based Local Algorithm

– Empirical in-memory running time comparison (in seconds)

– The running time highly depends on the processing order of 
vertices
– E.g., if processing vertices in the degeneracy ordering, then the time 

complexity is linear
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Other Works on Core Decomposition

– Core decomposition for dynamic graph
– How to maintain the core number when graph changes?
– [Zhang et al 2017]

– Core decomposition for uncertain graph 
– [Bonchi et al 2014] 

– Core decomposition for directed graph
– [Giatsidis et al 2011]
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Densest Subgraph

– Find the subset S of vertices in G where the induced subgraph 
of G by S has the largest average degree among all subsets
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Greedy-based Approximation Algorithm

– Iteratively remove the vertex with the minimum degree from the 
graph
– We obtain n subgraphs during the process
– Return the one with the maximum average degree as the result

– Time complexity: O(m)

(This is the same as the previous peeling algorithm)
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Greedy-based Approximation Algorithm

– Approximation ratio
– Density 𝜌 𝑆 of S: total number of edges divided by total number of 

vertices (half of the average degree)
– Upper bound of the maximum density 𝜌 𝑆∗

• 𝜌 𝑆∗ ≤ 𝑑OPQ(𝑆∗) ≤ 𝛿(𝐺): recall 𝛿(𝐺) is the maximum value 
among the minimum vertex degrees of all subgraphs of 𝐺

– Let’s look at the 𝛿 𝐺 -core: recall there exists a subgraph with minimum 
degree 𝛿(𝐺)

• Its density is at least 𝛿(𝐺)/2 ≥ 𝜌 𝑆∗ /2
– The approximation ratio of the greedy algorithm is 1/2
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Goldberg’s Algorithm for Densest Subgraph

– Decision version of the densest subgraph problem: Is there a 
subgraph S with density larger than 𝜆 ?
– 𝜌 𝑆 : density of S (half of the average degree)
– 𝑆̅:	vertices of G not in S
– 𝐸 𝑆, 𝑆̅ : edges between S and 𝑆̅

[Goldberg 1984]

S 𝑆̅
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Goldberg’s Algorithm for Densest Subgraph
[Goldberg 1984]

§ 𝜆 < 𝜌 𝑆∗ iff the 
minimum cut of 𝐺T is of 
value smaller than 2m

§ 𝜆 ≥ 𝜌 𝑆∗ iff the 
minimum cut of 𝐺T is of 
value exactly 2m

There is S s.t.

𝐺T
[Gionis and Tsourakakis 2015]



Page 38

Goldberg’s Algorithm for Densest Subgraph

– Thus, we can do binary search on 𝜆.
– When 𝜆 is smaller than but very close to 𝜌(𝑆∗), then the minimum 

cut of the graph 𝐺T corresponds to a densest subgraph of 𝐺

– But 𝜆 is a fractional number, when to stop?
– For any two subgraphs S1 and S2 with 𝜌 𝑆U > 𝜌 𝑆W , it holds 

that 𝜌 𝑆U − 𝜌(𝑆W) ≥
U

Q(QXU)

– Time complexity of Goldberg’s algorithm
– 𝑂(log 𝑛)	minimum cut computations, each for a different 𝜆	value
– By using parametric maximum flow techniques, can be 

implemented to run in 𝑂(n ^ m ^ log Q
`

O
)	time

[Goldberg 1984]
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Data Reduction for Densest Subgraph Computation

– Goldberg’s algorithm cannot be directly applied to large 
graphs, due to the high time complexity

– We can reduce the graph instance for Goldberg’s algorithm
– Real-world graphs are power-law graphs, many vertices are of small 

degree and thus cannot be in the densest subgraph

– The density of the 𝛿 𝐺 -core is at least 𝛿(𝐺)/2
– Thus, we can remove all vertices whose degree are smaller than 𝛿(𝐺)/2
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Data Reduction for Densest Subgraph Computation

– Thus, to exactly compute the densest subgraph, we only need to 
consider the 𝛿 𝐺 /2-core, rather than the entire graph
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Data Reduction for Densest Subgraph Computation

– In practice, we can first run the greedy algorithm to get an 
approximate densest subgraph S, and then run Goldberg’s 
algorithm on the 𝜌(𝑆) -core of G
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Other Works on Densest Subgraph Computation

– The densest subgraph can also be computed by linear 
programming
– [Charikar 2000]

– Densest subgraph computation in dynamic graphs
– [Epasto et al 2015]

– Locally densest subgraph
– [Qin et al 2015]

– Density-friendly graph decomposition
– [Danish et al 2017]
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Higher-order Structures

– Previous, we focused on vertices and edges

– Now, let’s consider higher-order structures, k-cliques (complete 
graphs with k vertices), which usually will find denser subgraphs
– A vertex is a 1-clique
– An edge is a 2-clique
– A triangle is a 3-clique

– Higher-order core decomposition
– Truss decomposition
– Nucleus decomposition

– Higher-order densest subgraph
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Truss Decomposition

– k-truss: the maximal subgraph in which every edge participates 
in at least k triangles

– k-core: the maximal subgraph in which every vertex
participates in at least k edges

– Like k-cores, k-trusses are nested

3-truss
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Truss Decomposition

– Truss number truss(u,v) of an edge: the largest k for which the 
k-truss contains the edge

– Truss decomposition: compute the truss number for each edge
■ k-truss is the subgraph induced by all edges with truss 

numbers at least k

Truss decomposition
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Computing Truss Decomposition

– Extend the peeling algorithm
■ Iteratively remove the edge that participates in the fewest 

number of triangles
■ How to efficiently compute the number of triangles for each 

vertex?
■ How to efficiently update the number of triangles after 

deleting one edge?

■ This needs an efficient triangle enumeration algorithm.
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Triangle Enumeration

– How to efficiently enumerate all triangles in a graph?

– How about enumerating wedge (v,u,w) and check the existence 
of edge (v,w)?
– The time complexity will be ∑ (𝑑 𝑢 )W�

<∈b

• This is higher than 𝑚
c
`, which bounds the maximum number of 

triangles
• E.g., consider a star graph

v

u

w
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Triangle Enumeration

– We can improve the time complexity by orienting the input 
graph

– How about enumerating wedge (v,u,w) and check the existence 
of edge (v,w)?
– The time complexity will be ∑ (𝑑d 𝑢 )W�

<∈b
– This can be small if we orient the graph smartly

v

u

w
Oriented graph
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Triangle Enumeration

v

u

w

How about enumerating wedge (v,u,w) 
and check the existence of edge (v,w)?

How to check the existence of an edge?

Recall that 𝛿(𝐺) ≤ 	 2𝑚 + 𝑛�

Hash table!

The total number of wedges checked is 𝑂(𝑚
c
`)
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Triangle Enumeration

– Hash table has both space and time overhead. Can we avoid 
the hash-table?
– Arrange the edge-existence checking in a smart way.

– This is to check whether u is connected to its 2-hop out-neighbor w
– All such checks for the same u are grouped together.
– The time complexity is no longer ∑ (𝑑d 𝑢 )W�

<∈b
• but ∑ (𝑑d 𝑣 ×𝑑X 𝑣 )�

e∈b

Yes!

w

u

v

Hash table is not needed!
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Triangle Enumeration

decreasing

𝛼(𝐺) ≤
2𝑚 + 𝑛�

2

As computing degeneracy ordering takes a significant portion of the total time, 
degree decreasing or increasing ordering is used in practice.
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Computing Truss Decomposition

– Extend the peeling algorithm
■ Iteratively remove the edge that participates in the fewest 

number of triangles
■ How to efficiently compute the number of triangles for each 

vertex?
■ Enumerate all triangles by the algorithm in previous slide

■ How to efficiently update the number of triangles after 
deleting one edge (u,v)?
■ Intersect the neighbor-sets of u and v in min d(u), d v

time

– The algorithm runs in 𝑂 𝛼 𝐺 ×𝑚 time
■ 𝛼 𝐺 is the arboricity of 𝐺, and is small for real graphs

Hash table is needed here!
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Nucleus Decomposition

– k-(r,s)-nucleus: the maximal union g of s-cliques in G such that 
for each r-clique C in g, there are at least k s-cliques in g
containing C
– k-core is a k-(1,2)-nucleus

– k-truss is a k-(2,3)-nucleus

triangles

edges

Iteratively remove vertices with fewer than k edges containing the vertex,
the remaining edges form the k-core

Iteratively remove edges with fewer than k triangles containing the edge,
the remaining triangles form the k-truss

Iteratively remove r-cliques with fewer than k s-cliques containing the r-clique,
the remaining s-cliques form the k-(r,s)-nucleus?

Yes!
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Nucleus Decomposition

– Iteratively remove r-cliques with fewer than k s-cliques
containing the r-clique, the remaining s-cliques form the k-(r,s)-
nucleus

– Let’s consider the hyper-graph 𝔾 = 𝕍, 𝔼
– 𝕍 is the set of r-cliques in 𝐺
– 𝔼 is the set of s-cliques in 𝐺 (hyper-edges)
– Each hyper-edge (s-clique) in 𝔾 connects to all r-cliques contained in the 

s-clique
– In truss decomposition, r = 2 and s = 3
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k-clique Enumeration

– How to efficiently enumerate k-cliques?
– Extend the graph orientation-based triangle enumeration 

algorithm
– Orient the input undirected graph to be a directed graph
– For each vertex u in G

• Enumerate (k-1)-cliques in the subgraph of G induced by u’s out-
neighbors

Each k-clique of G will be enumerated exactly once!
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k-clique Enumeration

– All k-cliques can be enumerated in 𝑂(𝑘× 𝛼 𝐺 mXW×𝑚) total time
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Higher-order Densest Subgraph

– k-clique densest subgraph: find the subgraph g of G, such that 
the average number of k-cliques per vertex in g is the largest 
among all subgraphs of G

– The peeling algorithm can be extended to find a k-
approximate k-clique densest subgraph

– The Goldberg’s algorithm can be extended to find the k-clique 
densest subgraph exactly
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Future Directions

– How to do truss decomposition without hash tables?

– What is the relationship between dense subgraphs with 
different density (average degree) values?

– How to scale up nucleus decomposition and k-clique densest 
subgraphs for large k values?

– How to effectively and efficiently incorporate other information 
(such as attributes, temporal) into dense subgraph computation?
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