Scalable Top-K Structural Diversity Search

Lijun Chang¹, Chen Zhang¹, Xuemin Lin¹, Lu Qin²
${ }^{1}$ UNSW Sydney, Australia
${ }^{2}$ University of Technology Sydney, Australia

Problem Definition

> Structural diversity of a user in a social network is the number of connected components in its neighborhood, which measures the multiplicity of social contexts of a user since each connected component represents a distinct social context. (Ref. "Structural Diversity in Social Contagion. PNAS'12. J. Ugander, L. Backstrom')
$>$ Given a threshold τ, the structural diversity $D_{s}(u)$ of u is the number of connected components, in the neighborhood-induced subgraph $\mathrm{G}_{N(u)}$, whose sizes are at least τ. For example, $\mathrm{D}_{\mathrm{S}}(\mathrm{H})=1$ if $\tau=3$.
$>$ Problem Statement: given a graph G and two integers k and τ, compute k vertices with the highest structural diversities according to the threshold τ.

State-of-the-art Approach [Huang et al. PVLDB'13]

$>$ General Idea

- an edge (v, w) is in $\mathrm{G}_{\mathrm{N}(\mathrm{u})}$ if and only if ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) forms a triangle in G
- $\mathrm{G}_{N(\omega)}$ can be obtained by enumerating all triangles in G containing u , which computes $\mathrm{D}_{\mathrm{S}}(\mathrm{u})$.
> General Framework
- For vertices u in G in decreasing upper bound order
- If the upper bound of u is no larger than the minimum of the current top-k results, then break
- Else compute $\mathrm{D}_{\mathrm{s}}(\mathrm{u})$ by enumerating triangles containing u, and update the current top-k result by u
- State of the art, A^{*} - B , dynamically tighten the upper bound of a vertex, and also use an A* search approach for testing whether $\mathrm{D}_{\mathrm{s}}(\mathrm{u}) \geq \tau$ without actually computing the exact $\mathrm{D}_{\mathrm{S}}(\mathrm{u})$.
> Drawbacks of A^{*} - B
- A triangle (u, v, w) is enumerated three times, e.g., once in computing $D_{S}(u), D_{S}(v)$, $\mathrm{D}_{\mathrm{s}}(\mathrm{w})$, respectively.
- A hash table is constructed and probed for enumerating triangles, which incur nonnegligible cost.
- A hash table is also used for combining connected components in $\mathrm{G}_{\mathrm{N}(\mathrm{u})}$

A Triangle Enumeration-based Approach

$>$ General Idea

- Adopt the state-of-the-art triangle enumeration algorithm, denoted TriE, for solving our problem, while enumerating each triangle at most once. (Ref. "Triangle Listing Algorithms: Back From the Diversion. ALENEX'14. M. Ortmann, U. Brandes")
$>$ Challenges
- To ensure each triangle is enumerated exactly once, TriE needs to process vertices in a specific order. However, for the efficiency consideration, we need to process vertices in decreasing order of their structural diversity upper bounds.
- A triangle (u, v, w) is enumerated once but is needed for computing $D_{s}(u), D_{s}(v)$, $\mathrm{D}_{\mathrm{s}}(\mathrm{w})$, and materializing triangles is space-consuming
> Our Solution to Resolving the Challenges
- We prove that by processing vertices in decreasing degree order, when processing a vertex u, we have generated all triangles containing u.
- Rather than materializing triangles, we maintain the connected components of $G_{N(u)}$ for every vertex using the disjoint-set data structure, which takes linear space to the number of edges in G.
$>$ The Algorithm Div-TriE
- Orient G to obtain a directed graph G^{+}, each edge pointing from the higher-degree vertex to the other vertex
- For vertices u in G in decreasing degree ($d(u)$) order
- If the upper bound $(d(u) / \tau)$ of u is no larger than the minimum of the current top-k results, then break
- Enumerate triangles (u, v, w) such that $v, w \in N^{+}(u)$ by TriE, and update the connected components of $G_{N(u)}, G_{N(v)}, G_{N(w)}$.
- Update the current top-k result by u.

[^0]The time complexity of Div-TriE* is $\mathrm{O}(\alpha(G) \times m)$.

[^0]: An Optimization Approach
 $>$ In Div-TriE, a hash table is still used to locate a connected component in a neighborhood-induced subgraph.
 $>$ We propose to associate the connected component containing v in $\mathrm{G}_{\mathrm{N}(\mathrm{u})}$ with edge (u, v) such that we eliminate the hash table. Denote the approach as DivTriE*.

 - When enumerating triangle (u, v, w) with $\mathrm{v}, \mathrm{w} \in \mathrm{N}^{+}(u)$ by TriE, we can directly locate the edges (u, v), (v, w), and ($u, w)$, while the edges $(v, u),(w, v),(w, u)$ are located by binding the two directions of each edge in an online preprocessing step
 $>$ We propose techniques to bind the two directions of every undirected edge in $\mathrm{O}(\alpha(G) \times m)$ time.

