

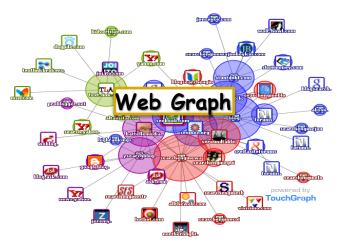
pSCAN: Fast and Exact Structural Graph Clustering

 Never Stand Still
 Faculty of Engineering
 Computer Science and Engineering

Lijun Chang¹, Wei Li¹, Xuemin Lin¹, Lu Qin², Wenjie Zhang¹

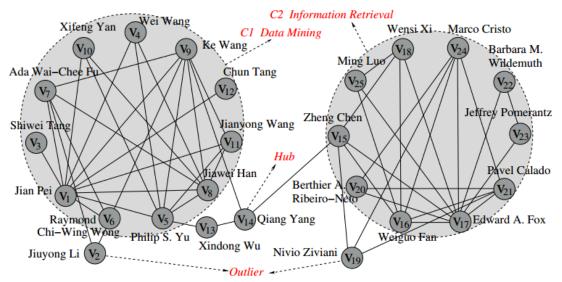
¹The University of New South Wales, Australia ²University of Technology Sydney, Australia

Outline


- Structural Graph Clustering
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- Experimental Studies
- Conclusion

Graphs

• Graphs are ubiquitous and can model complex relationships



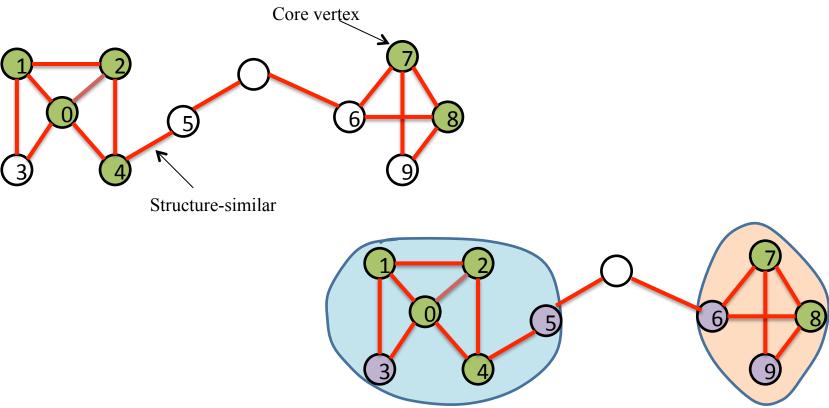
- Graph clustering
 - Group vertices into clusters: dense intra connection and sparse inter connection

Structural Graph Clustering

- SCAN [Xu+, KDD'07]
 - Identifies clusters, hubs, and outliers at the same time
 - Mimics DBSCAN [Ester+, KDD'96] for clustering spatial data

Example structural graph clustering

A Cluster = Cores + Borders


Core: vertices that are *structure-similar* to *many* other vertices Border: vertices that are not core but are *structure-similar* to a core

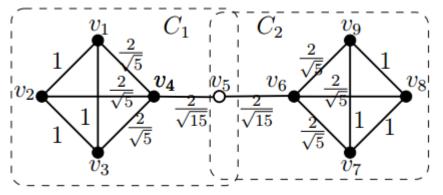
• Structural Similarity:
$$\sigma(u, v) = \frac{|N[u] \cap N[v]|}{\sqrt{d[u] \cdot d[v]}}$$
.

- Two vertices *u* and *v* are *structure-similar* if
 - Connected
 - Structural similarity $\geq \varepsilon$ (a given similarity threshold)
- Many: $\geq \mu$ (a given size threshold)

Example (ε=0.0001, μ=3)

Existing Approaches & Challenges

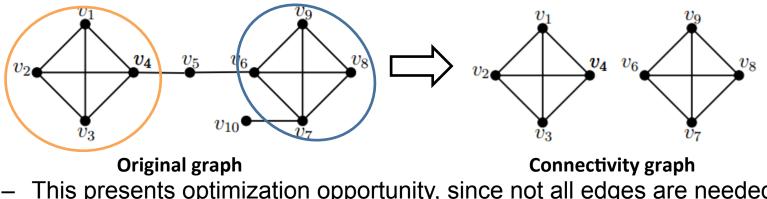
- If the structural similarity between every pair of adjacent vertices has been computed, clusters can be obtained in linear time.
- Existing Approaches:
 - SCAN [Xu+, KDD'07]
 - SCAN++ [Shiokawa+, VLDB'15]
- Challenge-I: a systematic way to reduce the number of structural similarity computations
- Challenge-II: efficiently checking whether two vertices are structuresimilar to each other
 - Existing approaches compute the exact structural similarity score


Outline

- Structural Graph Clustering
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- Experimental Studies
- Conclusion

Three Observations Utilized in Our Framework

• Observation-I: The Clusters May Overlap

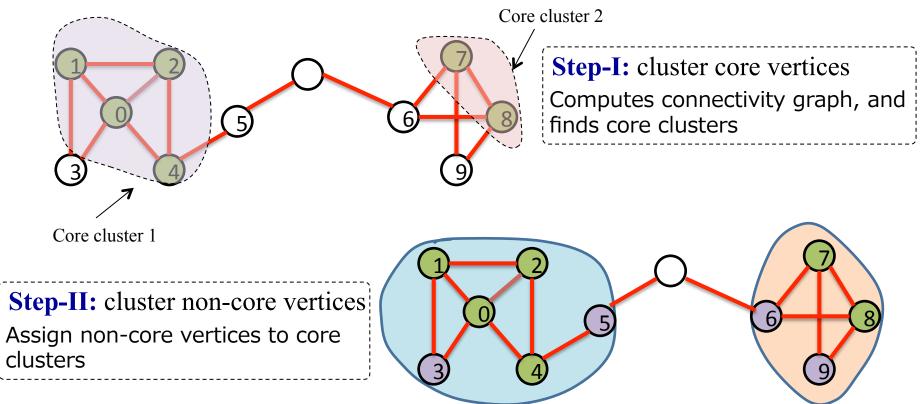


- Observation-II: The Clusters of Core Vertices Are Disjoint
 - Each core vertex belongs to a unique cluster
- Observation-III: The Clusters of Non-core Vertices Are Uniquely
 Determined By Core Vertices

Two-Step Framework

- Step-I: Cluster core vertices
 - Conceptually generate the connectivity graph for core vertices
 - Clusters of core vertices are CCs of the connectivity graph

 This presents optimization opportunity, since not all edges are needed for computing CCs



Two-Step Framework

- **Step-II**: Cluster non-core vertices
 - A non-core vertex belongs to the same cluster of a set of core vertices if it is structure-similar to one of the core vertices

Example (ε=0.0001, μ=3)

Outline

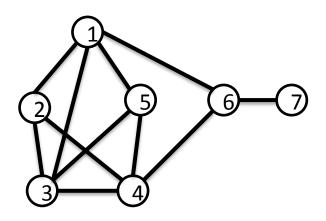
- Structural Graph Clustering
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- Experimental Studies
- Conclusion

Our pSCAN Approach

- Determine core vertices
 - Maintain sd(u), ed(u) for each vertex u
 - sd(u): similarity degree of u, the number of neighbors that have been confirmed to be structure-similar to u
 - u is a core vertex if $sd(u) \ge \mu$
 - *ed(u)*: effective degree of *u*, *sd(u)* + the number of neighbors whose structural similarities to *u* have not been computed
 - *u* is non-core vertex if *ed(u) < µ*
- We check core vertices in non-increasing effective degree order
 - After computing the structural similarity between *u* and *v*, we also update *sd(v)* or *ed(v)*

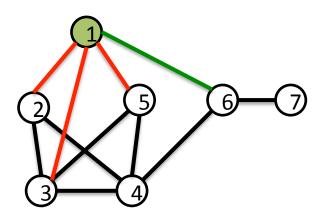
Our pSCAN Approach

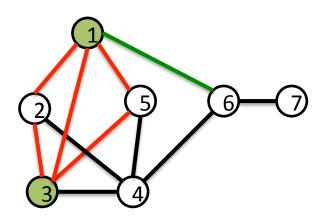
- Maintaining clusters of core vertices
 - Use the *disjoint-set data structure* to maintain the CCs of the connectivity graph
- For a core vertex *u*
 - First exam every neighbor v such that, (i) v is a core vertex, and (ii) u is structure-similar to v
 - union(u,v)
 - Then exam every neighbor v such that (i) v is a core vertex, and (ii) the structural similarity between u and v have not been computed
 - If u and v are in different CCs, check whether u is structure-similar to v, and union(u,v) if it is.
 - That is, if they are already in the same CC, we do not compute the structural similarity



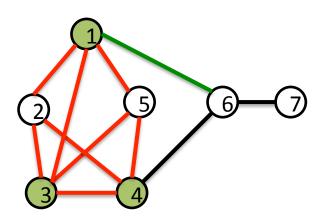
Analysis of pSCAN

- Time complexity is O(α(G)×m)
 - $\alpha(G)$ is the arboricity of G.
- Space complexity is O(m)


Theorem: pSCAN is worst-case optimal

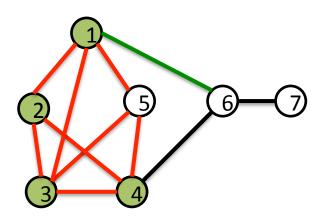

u	sd(u)	ed(u)
1	0	4
3	0	4
4	0	4
2	0	3
5	0	3
6	0	3
7	0	2

u	sd(u)	ed(u)
3	1	4
4	0	4
2	1	3
5	1	3
6	0	2
7	0	2



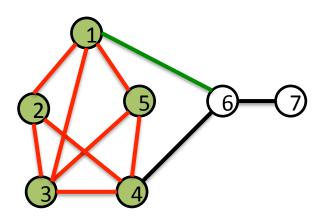
u	sd(u)	ed(u)
4	0	4
2	2	3
5	2	3
6	0	2
7	0	2

union(1,3)



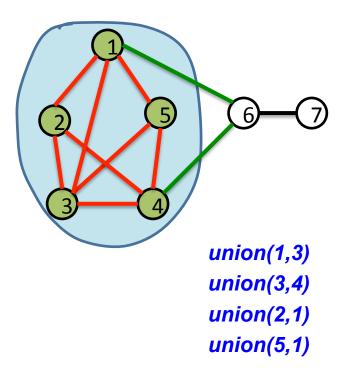
u	sd(u)	ed(u)
2	3	3
5	3	3
6	0	2
7	0	2

union(1,3) union(3,4)



u	sd(u)	ed(u)
5	3	3
6	0	2
7	0	2

union(1,3) union(3,4) union(2,1)



u	sd(u)	ed(u)
6	0	2
7	0	2

union(1,3) union(3,4) union(2,1) union(5,1)

u	sd(u)	ed(u)
6	0	2
7	0	2

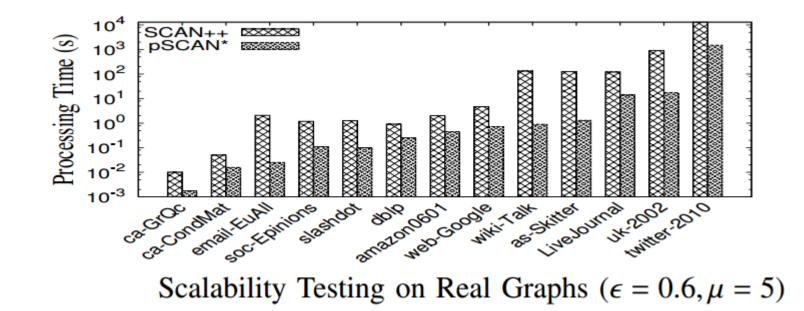
Optimizations

- Adaptive structure-similar checking
 - Compute the minimum number of common neighbors, *cn(u,v)*, required for the two vertices to be similar
 - Terminate early if (i) the number of computed common neighbors is ≥cn(u,v), or (ii) the upper bound number of common neighbors is smaller than cn(u,v)
- Pruning rule
 - For two vertices to be structure-similar, their degrees must satisfy a certain condition
- Cross link
 - $\sigma(u,v) = \sigma(v,u)$

Outline

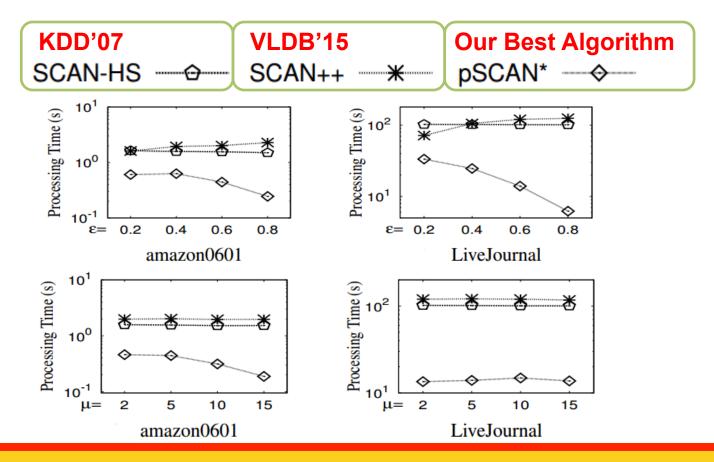
- Structural Graph Clustering
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- Experimental Studies
- Conclusion

Experimental Results

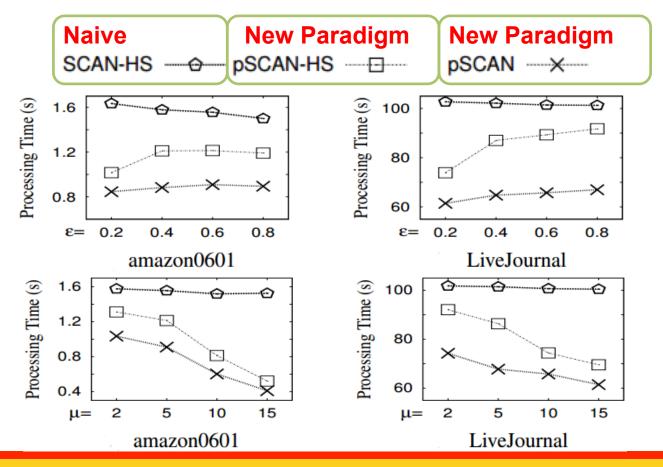

• Datasets

Graph	#Edges	#Vertices	\overline{d}	С
ca-GrQc	13,422	4,158	6.46	0.557
ca-CondMat	91,286	21,363	8.55	0.642
email-EuAll	339,925	224,832	3.02	0.079
soc-Epinions	405,739	75,877	10.69	0.138
slashdot	468,554	77,350	11.12	0.055
dblp	1,049,866	317,080	6.62	0.632
amazon0601	2,443,311	403,364	12.11	0.418
web-Google	3,074,322	665,957	9.23	0.459
wiki-Talk	4,656,682	2,388,953	3.90	0.053
as-Skitter	11,094,209	1,694,616	13.09	0.258
LiveJournal	42,845,684	4,843,953	17.69	0.274
uk-2002	261,556,721	18,459,128	28.34	0.603
twitter-2010	1,202,513,344	41,652,230	57.7	0.073

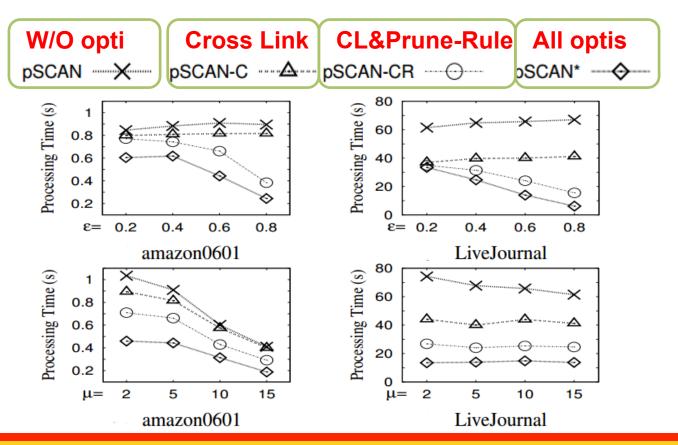
- Environments
 - ➢ Intel Xeon Processor 2.9GHz CPU and 32GB memory
 - ➢ All algorithms are implemented in C++



Scalability Testing



Comparing pSCAN* with SCAN-HS, SCAN++



Evaluating Our New Paradigm

Evaluating Optimization Techniques

Outline

- Structural Graph Clustering
- A Two-Step Framework
- Our pSCAN Approach and Optimizations
- Experimental Studies
- Conclusion

Conclusion

- A new paradigm for exact structural graph clustering
- A new approach aiming to reduce the number of structural similarity computations
- Prove that pSCAN is worst-case optimal
- three optimization techniques to speed up the checking of structuresimilar between two vertices

Thanks!

Q&A

Never Stand Still