
Deconstruct Densest Subgraphs
Lijun Chang

The University of Sydney

lijun.chang@sydney.edu.au

Miao Qiao

The University of Auckland

miao.qiao@auckland.ac.nz

ABSTRACT
In this paper, we aim to understand the distribution of the densest

subgraphs of a given graph under the density notion of average-

degree. We show that the structures, the relationships and the

distributions of all the densest subgraphs of a graph G can be en-

coded inO(L) space in an index called the ds-Index. Here L denotes

the maximum output size of a densest subgraph of G. More im-

portantly, ds-Index can report all the minimal densest subgraphs

of G collectively in O(L) time and can enumerate all the densest

subgraphs of G with an O(L) delay. Besides, the construction of

ds-Index costs no more than finding a single densest subgraph us-

ing the state-of-the-art approach. Our empirical study shows that

for web-scale graphs with one billion edges, the ds-Index can be

constructed in several minutes on an ordinary commercial machine.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis; • In-
formation systems→ Web mining.
KEYWORDS
Densest Subgraph, Graph Analytics, Query Processing

ACM Reference Format:
Lijun Chang and Miao Qiao. 2020. Deconstruct Densest Subgraphs. In Pro-
ceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei,
Taiwan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3366423.

3380033

1 INTRODUCTION
The dense subgraphs of a given graph are the subgraphs that max-

imize some notion of density. They are found to be semantically

significant in real graphs in various domains. For example, dense

subgraphs can be communities in social networks [17], expert teams

in co-authorship graphs [9], spam links in web graphs [7, 21] and

stories in social media [3]. The primary role of dense subgraphs

in graph analytics has yielded extensive studies on the problem of

dense subgraphs identification (see [23] and references therein).

A widely adopted notion of graph density is the average-degree
density [5, 9, 14, 22], which is also used throughout this paper. It is

defined as the ratio of the number of edges to the number of nodes

in the graph. Given a graphG, the maximum density ρ∗(G) is the
largest density over all subgraphs of G. The research on dense sub-

graphs identification initially focuses on Finding a Single Densest

Subgraph (FSDS) [9, 14, 22]. A solution to FSDS can terminate as

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380033

4C 4C 4C

... ...l

...

l ...l

 r

Figure 1: A graph Gl,r lines r 4-cliques C4 up with l nodes
between each pair of consecutive cliques. Gl,r has n = 4r +
l(r − 1) nodes andm = 6r + (l + 1)(r − 1) edges.

soon as any subgraph д of G whose density ρ(д) equals ρ∗(G) is
found. The state-of-the-art algorithm finds a densest subgraph of an

undirected graph G with n nodes andm edges in O(nm log(n2/m))
time andO(m) space. This time complexity is achieved by applying

the push-relabel algorithm [20] to a parametric flow network for-

mulation of FSDS [22] (see Section 2.2 for a detailed explanation).

The objective of dense subgraphs identification has recently

been expanded from FSDS to Finding Multiple Dense Subgraphs

(FMDS) [5, 31]. It is observed in [5] that a densest subgraph may

contain multiple minimal densest subgraphs — a densest subgraph
is minimal if it is strictly denser than all of its proper subgraphs —

and the minimal densest subgraphs contain disjoint set of nodes.

Thus, it will be beneficial to compute all minimal densest subgraphs

in a graph when we aim to find multiple subgraphs by maximizing

the aggregated density while having limited overlap [5].

The enhanced objective of dense subgraphs identification, i.e.,
to find multiple dense subgraphs, urges us to

‘identify many (if not all) densest subgraphs, under-

stand their distribution in the graph, and ideally de-

termine the relationships among them.’

A valuable probe into the structure of the densest subgraphs is made

by Balalau et al. [5] who introduced the concept of minimal densest

subgraph. To find each minimal densest subgraph of a graph with

n nodes, Balalau et al. proposed an algorithm that triggers O(logn)
instances of FSDS. Suggested by the graph in Figure 1, the total

number of minimal densest subgraphs can be proportional to n:
when l ≥ 2, each of the r 4-cliques is a minimal densest subgraph of

Gl,r . Therefore, it necessitates O(n logn) instances of FSDS to find

all the minimal densest subgraphs, which is extremely expensive.

Our Contributions. Based on the prior work [5], we formulate

the problem of deconstructing densest subgraphs as follows.

Problem 1 (Deconstruct Densest Subgraphs). Understand
the relationships of the densest subgraphs of an undirected graph G
under the average-degree density, and propose algorithms to

(1) Efficiently report all the minimal densest subgraphs of G;
(2) Efficiently report all the densest subgraphs of G.

We answer Problem 1 with an index called the ds-Index. The ds-
Index encodes all the inner structures of the densest subgraphs of

https://doi.org/10.1145/3366423.3380033
https://doi.org/10.1145/3366423.3380033
https://doi.org/10.1145/3366423.3380033

WWW ’20, April 20–24, 2020, Taipei, Taiwan Lijun Chang and Miao Qiao

G inO(L) space. L denotes the maximum size of a densest subgraph

of G where the size of a graph is the summation of its number of

edges and its number of nodes. With the ds-Index,
(1) all the minimal densest subgraphs of G can be reported in

O(L) time in total, and

(2) all the densest subgraphs of G can be enumerated with an

O(L) delay.

When G has only one densest subgraph (for example, whenG is a

clique), ds-Index is optimal to Problem 1 since the time complexity

of Problem 1 is bounded by its output size which is exactly L. When

G has at least d (minimal) densest subgraphs for any integer d ,
ds-Index remains optimal in the worst-case. For example, let G be

the graph in Figure 1 with r ≥ d and l = 3. The total number

of edges in G is 10r − 4 and the maximum density of G is
3

2
. The

minimal densest subgraphs of G are the r 4-cliques in G, and thus

the total number of edges in the minimal densest subgraphs is 6r .
The densest subgraphs ofG are the power set of the r 4-cliques and
thus the expected/average number of edges of a densest subgraph

is 3r . It is worth pointing out that a densest subgraph is not simply

a union of some minimal densest subgraphs, e.g., see Figure 2.

v1 v2

v3 v4

v5

v6

Figure 2: The entire graph is densest, and the subgraph in-
duced by {v1,v2,v3,v4} is a minimal densest subgraph

The ds-Index of a given graph G provides a shortcut to all the
(minimal) densest subgraphs of G. Its construction, however, costs
no more than finding a single densest subgraph ofG using the state-

of-the-art solution, the network-flow based solution. Besides, via a

reduction of G prior to the network-flow computation, web-scale

graphs can be easily handled. Our empirical study shows that for a

real graph with one billion edges, the ds-Index can be constructed

in merely several minutes on an ordinary commercial machine.

2 PRELIMINARIES
The input is an undirected graph G. Denote by n = |V (G)| and
m = |E(G)| the total number of nodes and edges of G, respectively.
An undirected edge from nodeu to nodev is denoted as (u,v)while
a directed edge ⟨u,v⟩. For each node v in V (G), denote by d(v) the
degree of v in G, i.e., d(v) = |{u ∈ V (G) | (v,u) ∈ E(G)}|. Without

loss of generality, we assume that G is a connected graph with at
least two nodes; thus, d(v) > 0, ∀v ∈ V (G).

2.1 Densest Subgraph
For any graph д, its node set is denoted as V (д) and its edge set is

denoted as E(д). Its average-degree density is ρ(д) =
|E(д) |
|V (д) | .

Definition 1 (Densest Subgraph). A densest subgraph of G
is a subgraph д of G that maximizes ρ(д). Themaximum density
of G is ρ∗(G) = maxд subgraph of G ρ(д).

Consider a subset S ofV (G). The induced subgraph ofG on S is the
graph with node set S and edge set E(S) = {(u,v) ∈ E(G) | u,v ∈ S}.
Since the induced subgraph is uniquely decided by S and G while

G is the input graph, we abuse S to denote the induced subgraph of

G on S . The density of the induced subgraph S is ρ(S) = |E(S) |
|S | . It is

straightforward that a densest subgraph of G must be an induced

subgraph of G, i.e., ρ∗(G) = maxS ⊆V (G) ρ(S).
Let S1 and S2 be two densest subgraphs ofG . It is known [5] that

S1∪S2 is a densest subgraph ofG , and S1∩S2 is either an empty set

or a densest subgraph ofG . Thus, the maximal densest subgraph of

G is unique, and the minimal densest subgraphs of G are disjoint.

Definition 2 (Maximal/Minimal Densest Subgraph). The
union of all densest subgraphs of G is a densest subgraph of G and is
called the maximal densest subgraph of G. A densest subgraph S of
G is minimal if it is strictly denser than all of its proper subgraphs.

2.2 Parametric Flow Network and FSDS
The state-of-the-art solution to finding a single densest subgraph

(FSDS) works on flow networks [22]. Let λ ≥ 0 be a parameter.

The parametric flow network, called λ-graph Gλ , of G is a di-

rected graph where every edge e bears a non-negative capacity
c(e). Specifically, Gλ has n + 2 nodes, V (Gλ) = V (G) ∪ {s, t} with
s and t being the source node and target node, respectively, and
4n + 2m parameterized directed edges categorized in 4 types:

1

One-edges For each edge (u,v) of G, E(Gλ) has two edges ⟨u,v⟩
and ⟨v,u⟩, both having a capacity of 1;

Source-edges For each nodev ofG , E(Gλ) has an edge ⟨s,v⟩ bear-
ing a capacity of d(v), the degree of v in G;

Target-edges For each node v ofG , E(Gλ) has an edge ⟨v, t⟩ bear-
ing a capacity of 2λ;

Zero-edges For each node v ofG , E(Gλ) has two edges, ⟨v, s⟩ and
⟨t ,v⟩, both bearing a capacity of 0.

2λ

2λ

2λ

2λ
1

11

1

2

3

1

G λ

v1

v2

v3

v4

ts

v1

v2 v3

v4

G

2

Figure 3: An undirected graph G and its λ-Graph Gλ (zero-
edges are lined in dashed arrows).

Example 1. Figure 3 shows the λ-graph of an undirected graph G .
G has 4 nodes and 4 edges. Gλ has 6 nodes and 24 directed edges.

The λ-graph of G bridges the density of an induced subgraph of

G to the capacity of an s-t cut ofGλ . Let S be a subset of V (G), and

S = V (G)\S be the complement of S . Denote by (S∪{s}, S∪{t}) the
s-t cut of Gλ that consists of all edges in Gλ from nodes in S ∪ {s}

to nodes in S ∪ {t}. The capacity of a cut is the summation of the

capacities of edges in the cut. It can be verified that the capacity of

cut (S ∪ {s}, S ∪ {t}) is

c(S ∪ {s}, S ∪ {t}) =
∑
v ∈S d(v) + 2λ |S | + |E(G) ∩ (S × S)|

=2m − 2|E(S)| + 2λ |S | = 2m + 2(λ − ρ(S))|S |. (1)

1
This formulation slightly simplifies the one proposed by Goldberg [22].

Deconstruct Densest Subgraphs WWW ’20, April 20–24, 2020, Taipei, Taiwan

Lemma 1. Let (S∗ ∪ {s}, S∗ ∪ {t}) be a minimum s-t cut of
Gλ , i.e., having the minimum capacity among all s-t cuts. Then, its
capacity is decided by the relation between λ and ρ∗(G):

(1) If λ < ρ∗(G) then c(S∗ ∪ {s}, S∗ ∪ {t}) < 2m.
(2) If λ ≥ ρ∗(G) then c(S∗ ∪ {s}, S∗ ∪ {t}) = 2m.

When λ is close enough to ρ∗(G), S∗ is a densest subgraph of G:
(3) If ρ∗(G) − 1

n(n−1) < λ < ρ∗(G) then ρ(S∗) = ρ∗(G).

The proof of Lemma 1 is largely based on Goldberg’s work [22],

and is given in Section A in Appendix. According to Lemma 1(3),

finding a densest subgraph ofG boils down to finding a λ such that

the capacity of a minimum s-t cut of Gλ is slightly smaller than

2m. Besides, Lemma 1(1) and (2) suggest a binary search which is

terminated when λ < ρ∗(G) < λ + 1

n(n−1) .

Goldberg [22] finds the desirable λ in logn instances of the net-

work flow computation based on themax-flowmin-cut theorem:

the capacity of a minimum cut equals the value of a maximum flow.
Here, a flow of Gλ is a mapping f from each edge e ∈ E(Gλ) to a

real value f (e) ∈ R that satisfies three properties:

Capacity f (e) ≤ c(e) for each edge e ∈ E(Gλ);

Antisymmetry f (⟨v,u⟩) = −f (⟨u,v⟩) for each edge ⟨u,v⟩ inGλ ;

Conservation
∑
edge e ∈E(Gλ) into u f (e) =

∑
edge e ∈E(Gλ) out u f (e) =

0 for each node u ∈ V (Gλ) \ {s, t}.

The value of the flow f is defined as

val(f) =
∑
edge e ∈E(Gλ) out of s f (e) =

∑
edge e ∈E(Gλ) into t f (e).

Amaximumflow ofGλ is a flow f that maximizes its valueval(f).
Finally, the logn factor in the time complexity can be removed

by leveraging the push-relabel algorithm [20].

Lemma 2 ([20]). The maximum flow of Gλ for all possible λ can
be computed in O(nm log(n2/m)) time. A densest subgraph of G can
be found in O(nm log(n2/m)) time.

3 DECONSTRUCT DENSEST SUBGRAPHS
To find a densest subgraph, the state-of-the-art approach relies on

the λ-graph of G with λ ∈ (ρ∗(G) − 1

n(n−1) , ρ
∗(G)) (Lemma 1(3)).

However, the key to the structure of all the densest subgraphs ofG
is hidden in the λ-graph with λ = ρ∗(G), specifically, the residual
graph of this λ-graph under the maximum flow.

Denote byH the λ-graph ofG under λ = ρ∗(G). Given any flow

f ofH , the residual capacity of an edge e inH under f is defined

as cf (e) = c(e) − f (e). An edge e is saturated if cf (e) = 0. The

residual graph ofH under f is a graphHf with all nodes inH

and all non-saturated edges, i.e.,V (Hf) = V (H) and E(Hf) = {e ∈
E(H) | f (e) < c(e)}. Let f ∗ be a maximum flow ofH . We have the

following lemma, whose proof is in Section B in Appendix.

Lemma 3. Let S be a non-empty subset ofV (G), and S beV (G) \ S .
The following statements are equivalent.

(1) S is a densest subgraph of G;
(2) (S ∪ {s}, S ∪ {t}) is a minimum s-t cut ofH ;
(3) There is no edge from S ∪ {s} to S ∪ {t} inHf ∗ .

We callHf ∗ the critical residual graph. To enumerate all dens-

est subgraphs by following Lemma 3, we decomposeHf ∗ , by treat-

ing it as a simple directed graph, into strongly connected compo-

nents (SCCs). Denote by C(Hf ∗) the component set (i.e., the set

of all SCCs) of Hf ∗ . For each node v ∈ V (Hf ∗), denote by scc(v)
the unique SCC in C(Hf ∗) that contains v . By contracting each

SCC ofHf ∗ into a super-node, we obtain the critical component
graph, denoted asHC

, which is a directed acyclic graph (DAG).

scc

C
nt

scc

 sccscc

scc

scc

black hole

scc

scc(t)

scc(s)={s}

3

1

2 4

5

6 7

|scc(t)|>1
exists only when

Figure 4: The critical component graphHC

The critical component graphHC
is conceptually sketched in

Figure 4, and is formally analyzed in Section D in Appendix. We

further introduce the notion of “non-trivial” to the components.

Specifically, a componentC ofHf ∗ is non-trivial ifC includes nei-

ther the source node s nor the target node t , i.e.,C < {scc(s), scc(t)}.
The set of all non-trivial components, called non-trivial compo-
nent set, is denoted as Cnt = C(Hf ∗) \ {scc(s), scc(t)}. The set of
all nodes of G in non-trivial components, called the non-trivial
node set, is denoted as Snt = ∪C ∈CntC . Now, we are ready to

define the ds-Index for indexing densest subgraphs.

Definition 3. The ds-Index of G records
• The non-trivial components Cnt of critical residual graphHf ∗ ;
• The subgraph of the critical component graphHC on Cnt ;
• The induced subgraph of G on the non-trivial node set Snt .

For example, the ds-Index for the critical component graph in

Figure 4 focuses on theHC
in the scope of the rectangle and the

corresponding part of the underlying critical residual graph.

Denote by L the size, the summation of the total number of nodes

and the total number of edges, of the maximal densest subgraph

of G. Note that L ≤ m + n. Theorem 1 shows the space and time

complexity of enumerating all the (minimal) densest subgraphs

using the ds-Index.

Theorem 1. For a given graphG whose maximal densest subgraph
is of size L, the ds-Index takes O(L) space. With the ds-Index,
• all densest subgraphs of G can be enumerated in O(L) delay,
• all minimal densest subgraphs of G can be computed in O(L)
time in total.

We prove Theorem 1 in three parts in the following three sub-

sections: the space complexity of ds-Index, the time complexity

of enumerating all densest subgraphs and that of enumerating all

minimal densest subgraphs of G.

3.1 Space Complexity of ds-Index
The size of ds-Index is dominated by the size of the induced sub-

graph of G on Snt . This size, as Theorem 2 shows, however, is the

very size O(L) of the maximal densest subgraph of G.

Theorem 2 (Maximal Densest Subgraph). The non-trivial node
set Snt is the maximal densest subgraph of G.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Lijun Chang and Miao Qiao

The Proof of Theorem 2.We start with proving the following two

properties of the critical residual graphHf ∗ .

Lemma 4. For any non-source node v ∈ V (Hf ∗) \ {s}, the critical
residual graph Hf ∗ has no edge from the source node s to v , i.e.,
⟨s,v⟩ < E(Hf ∗). For any nodeu ∈ V (Hf ∗)\{s, t}, the critical residual
graph has an edge from u to s , i.e., ⟨u, s⟩ ∈ E(Hf ∗).

Proof. Recall that in the λ-graph H , s and t have no edges

between them, therefore, t has no edge from/to s in the critical

residual graphHf ∗ . Thus, it suffices to consider nodes in V (Hf ∗) \

{s, t} = V (G). Let v be an arbitrary node in V (G). Based on the

assumption in Section 2.1 that G is a connected graph with at least

two nodes, the degree of v has d(v) > 0 in G. Besides, the cut

({s},V (G) ∪ {t}) is a minimum s-t cut since (i) its capacity is 2m
and (ii) the capacity of a minimum s-t cut ofH is 2m (Lemma 1(2)).

By following the proof of Lemma 3, we know that f ∗(⟨s,v⟩) =
c(⟨s,v⟩) = d(v) > 0. According to the antisymmetry property of a

flow, edge ⟨v, s⟩ has therefore, f ∗(⟨v, s⟩) = −f ∗(⟨s,v⟩) = −d(v) <
0 = c(⟨v, s⟩). Thus, ⟨s,v⟩ is saturated and ⟨v, s⟩ is unsaturated
under f ∗, and ⟨s,v⟩ < E(Hf ∗) and ⟨v, s⟩ ∈ E(Hf ∗). □

Lemma 5. For every node v ∈ V (Hf ∗) \ {s, t} = V (G), there is a
path from t to v in the critical residual graphHf ∗ .

Proof. The general idea of proving Lemma 5 is that there must

exist a directed path from s to v and then to t in H such that

f ∗(e) > 0 for every edge e in the path. This is because Lemma 4

states that f ∗(⟨s,u⟩) > 0 for every u ∈ V (Hf ∗ \ {s, t}. The full

proof of Lemma 5 is in Section C in Appendix. □

To prove Theorem 2, we first prove that Snt is a densest subgraph
of G. Firstly, according to Lemma 4, ({s} ∪ Snt , scc(t)) is an s-t cut
ofH , as scc(s) = {s}. Secondly, according to Lemma 5, there is no

edge in the residual graphHf ∗ from a node in {s} ∪ Snt to a node

in scc(t). Therefore, according to Lemma 3, ({s} ∪ Snt , scc(t)) is a
minimum s-t cut ofH , and Snt is a densest subgraph of G.

Now we prove that, for any node v ∈ scc(t) with v , t , there is
no densest subgraph ofG containing v . Suppose v is in a densest

subgraph S of G. Then, there is no edge from {s} ∪ S to S ∪ {t} in
Hf ∗ (Lemma 3); this contracts the facts that v ∈ S and v ∈ scc(t).
Thus, v does not belong to any densest subgraph of G. Therefore,
Snt is the maximal densest subgraph ofG . This completes the proof

of Theorem 2. ■

3.2 Enumerate All Densest Subgraphs
To enumerate all densest subgraphs, we define the non-trivial de-

scendants and ancestors of a component and introduce the inde-

pendence among components.

Definition 4 (nt-descendant and nt-ancestor). For a non-
trivial componentC , the set of non-trivial descendants ofC isdesnt (C) =
{C ′ ∈ Cnt \ {C} | C { C ′ inHC } where C { C ′ denotes that
there exists a directed path inHC fromC toC ′. The set of non-trivial
ancestors of C is ancnt (C) = {C ′ ∈ Cnt \ {C} | C ′ { C inHC }.

Definition 5 (IndependentComponent Set). Two distinct non-
trivial components C1 and C2 are independent if C1 < des

nt (C2) and
C2 < des

nt (C1). A non-trivial component set Z ⊆ Cnt is independent
if every pair of the components in Z are independent.

For example, in Figure 4, the nt-descendants of scc1 are scc2, scc5,
and scc6; the nt-ancestor of scc4 is scc3. {scc2, scc4} is independent,
while {scc1, scc6} is not. Denote by des

nt (Z) the union of the non-

trivial descendants of the components inZ for a subsetZ of Cnt , i.e.,
desnt (Z) = ∪C ∈Zdes

nt (C). Then, we have the following theorem
for enumerating all densest subgraphs.

Theorem 3. For a graph G, by enumerating all the independent
component sets Z ⊆ Cnt and outputting the induced subgraph of
G with nodes in components in Z ∪ desnt (Z), i.e., ∪C ∈Z∪desnt (Z)C ,
one can enumerate every densest subgraph of G exactly once.

The Proof of Theorem 3. To enumerate all the densest subgraphs,

we show that a graph is a densest subgraph if and only if it can

be disjointly partitioned into components in Z ∪ desnt (Z) of an
independent component set Z .

We call a subset Z of Cnt as non-trivial descendant closed
(d-closed) if desnt (Z) ⊆ Z . We first prove that there is a bijection

between densest subgraphs and d-closed component sets.

Lemma 6. For any d-closed subset Z of Cnt , S = ∪C ∈ZC is a
densest subgraph of G.

Proof. A d-closed subset Z has no edge, in the critical compo-

nent graphHC
, to Cnt \ Z . According to Lemmas 3, 4 and 5, S is a

densest subgraph of G. □

Lemma 7. For any non-trivial component C of the critical compo-
nent graphHC of G, a densest subgraph S of G contains either none
or all of the nodes in the component C .

Proof. This directly follows from Lemma 3 and the definition

of strongly connected component. □

Following Lemma 3 and 7, for every densest subgraph S of G,
there is a d-closed subset Z of Cnt such that S = ∪C ∈ZC . It remains

to build up the bijection between the independent component sets

and the d-closed component sets.

Lemma 8. For each d-closed component set Z ′ there is a unique
independent component set Z such that Z ′ = Z ∪ desnt (Z).

Proof. Let Z be the set of components in Z ′ with no incoming

edges inHC
from any component in Z ′. Z is uniquely determined

by Z ′. Now we prove that Z is independent by contradiction. Sup-

pose there exist C1,C2 ∈ Z ⊆ Z ′ and C1 ∈ des
nt (C2). Then there

is a directed path from C2 to C1 in H
C
. Let C ′ be the immediate

predecessor of C1 on the path. Since Z ′ is d-closed, C ′ ∈ Z ′. The
edge from C ′ to C1 contradicts the construction of Z . □

By concatenating the above two bijections, we can non-repeatedly

enumerate all densest subgraphs by enumerating all independent

component subsets. This completes the proof of Theorem 3. ■

Following Theorem 3, all the densest subgraphs ofG can be non-

repeatedly enumeratedwith anO(L) delay by calling EnumAll(∅,Cnt)
in Algorithm 1. The algorithm recursively selects the independent

component set Z1 while keeping, in Z2, the components that are

independent with all the components of Z1. When a component

C is moved from Z2 to Z1, all the descendants and ancestors of C
and C itself are removed from Z2 and then a recursion is invoked.

Note that every recursion (Line 5) costsO(L) time and produce one

Deconstruct Densest Subgraphs WWW ’20, April 20–24, 2020, Taipei, Taiwan

Algorithm 1: EnumAll

Input: Two sets of non-trivial components Z1 and Z2
Output: All densest subgraphs S with

S ⊆
⋃
C ′∈desnt (Z1∪Z2)∪Z1∪Z2

C ′

1 if Z1 , ∅ then Output the induced subgraph of⋃
C ′∈Z1∪desnt (Z1)

C ′;

2 if Z2 , ∅ then
3 for each component C in Z2 do
4 Z2 ← Z2 \ {C};

5 EnumAll (Z1 ∪ {C},Z2 \ desnt (C) \ ancnt (C));

densest subgraph (Line 1), therefore, Algorithm 1 pays O(L) time

for each densest subgraph of G.

3.3 Enumerate Minimal Densest Subgraphs
To explain how to use ds-Index to enumerate all theminimal densest

subgraphs of G, we specialize a type of components in Cnt .

Definition 6 (Black Hole Component). A non-trivial com-
ponent is a black hole component if it has no outgoing edges in the
critical component graph to any other non-trivial components.

For example, the critical component graph in Figure 4 has two

black hole components, scc6 and scc7.

Theorem 4 (Minimal Densest Subgraph). Let S be a subset of
V (G). S is a minimal densest subgraph ofG if and only if S is a black
hole component of the critical component graphHC of G.

Proof. This theorem directly follows from Theorem 3 and the

definition of minimal densest subgraph. □

According to Theorem 4, the black hole components are the

minimal densest subgraphs ofG , which can be reported by ds-Index
in O(L) total time.

3.4 Scale the Index Construction
To improve the practical efficiency of ds-Index construction, we
propose a reduction step to safely reduce the size of G , by inexpen-

sively finding a supergraph of the maximal densest subgraph of G.
The correctness of the reduction is based on the observation below.

Lemma 9. Let G be a connected graph with at least two nodes. For
a densest subgraph S of G, every node v in S has its degree dS (v) on
S no less than ⌈ρ∗(G)⌉.

The proof of Lemma 9 is given in Section E in Appendix. When

a direct computation of ρ∗(G) is costly, there is an inexpensive

computation of the upper and lower bounds of ρ∗(G).

Lemma 10 ([14]). Let ρ̃ be the highest density among the n sub-
graphs that are generated in an iterative peeling fromG the node with
the lowest degree. ρ∗(G)/2 ≤ ρ̃ ≤ ρ∗(G).

Two-Step Construction. Denote by Sm the maximal densest sub-

graph ofG . According to Lemma 9, the degree of any node in Sm is

no less than ⌈ρ∗(G)⌉ and then no less than ⌈ρ̃⌉ (Lemma 10). Thus,

we can safely reduce the graphG before the flow computation using

the ⌈ρ̃⌉-core [6]. Note that, the computation of ρ̃ and the ρ̃-core of
G takes only linear time [6]. We construct ds-Index in two steps.

Reduction Compute ρ̃, the highest density among then subgraphs
that are generated in an iterative peeling from G the node

with the lowest degree. Compute the ⌈ρ̃⌉-core of G and re-

place G with the ⌈ρ̃⌉-core.
Flow Perform the parametric network flow algorithm on the λ-

graph of G. Generate ρ∗(G), and the critical component

graph. Construct the ds-Index based on Definition 3.

4 RELATEDWORKS
The problem of dense subgraph identification has been widely

studied [23]. A subgraph with the largest average degree can be

computed exactly in O(nm log(n2/m)) time by parametric maxi-

mum flow [20, 22], and a 2-approximation result can be computed

in linear time by iteratively removing the vertex with the smallest

degree [14]. Besides, dense subgraph identification in streaming

and dynamic environment is studied [4, 8, 18].

Recently, the research interests regarding dense subgraph identi-

fication have been devoted to finding multiple dense subgraphs [5,

16, 25, 29, 31]. For example, computing all locally densest subgraphs,
which form a nested structure, is studied in [16, 29]. Here, all the

subgraphs in the nested structure have different densities, and only

the inner-most subgraph is a (globally) densest subgraph while

other subgraphs are locally but not globally densest subgraphs (i.e.,
their densities are smaller than ρ∗(G)). The problem of computing

top-k dense subgraphs with limited overlap is studied in [5], which

iteratively computes minimal densest subgraphs and removes a

certain proportion of its nodes from the input graph. As we will

show, our new solution to the problem of computing all the minimal

densest subgraphs significantly outperforms the existing one in [5].

Higher-order variants of the densest subgraph problem has also

been studied in the literature. Tsourakakis [30] aims tomaximize the

average number ofh-cliques (i.e., divided by the number of nodes) in

the result subgraph for a parameterh, which generalizes the densest
subgraph problem as an edge is a 2-clique. Recently, Fang et al. [19]

further generalize the problem by considering an arbitrary pattern

graph, and aim to maximize the average number of occurrences of

the pattern in the result subgraph. Nevertheless, the solutions of [19,

30] are still based on the parametric flow network as described in

Section 2.2. Thus, our techniques can be straightforwardly extended

to deconstruct the densest subgraphs for these settings.

Dense subgraph identification based on other notions of den-

sity, usually referred to as cohesive subgraph identification, has

also been extensively studied [12], for example, minimum-degree

based k-core computation [28], triangle based k-truss computa-

tion [15, 26, 32], edge-connectivity based k-edge connected com-

ponent computation [2, 13], clique [11] and its relaxations (e.g.,

k-plex [27], n-clique [10], n-clans [24]).

5 EXPERIMENTS
We arrange the empirical study in two parts. The first part evaluates

the construction efficiency of ds-Index and the second part exam-

ines the performance of plugging ds-Index as a building block into

an existing solution to top-k dense subgraphs identification [5].

The experiments were carried out on 22 real graphs downloaded

from the Stanford Network Analysis Platform
2
, the Laboratory

2
http://snap.stanford.edu/

http://snap.stanford.edu/

WWW ’20, April 20–24, 2020, Taipei, Taiwan Lijun Chang and Miao Qiao

Table 1: Construct ds-Index on real graphs and apply ds-Index on a problem of FMDS [5].
Reduced graph G− Index time of ds-Index (seconds) TopkDS

Graph G |V (G) | |E(G) | ρ∗(G) ⌈ρ̃ ⌉
|V (G−) | |E(G−) | |E(G−)|

|E(G)| Reduction Flow Total (seconds)

CA-CondMat 21,363 91,286 13.37 13 719 7,744 8.48% 0.002 0.004 0.006 0.15

Email-EuAll 224,832 339,925 32.92 33 527 17,346 5.10% 0.007 0.06 0.067 0.207

Epinions 75,877 405,739 60.25 61 999 60,192 14.84% 0.008 0.24 0.248 0.67

slashdot 77,350 468,554 42.13 43 205 8,637 1.84% 0.009 0.014 0.023 0.854

dblp 317,080 1,049,866 56.57 57 280 13,609 1.30% 0.049 0.021 0.07 0.635

web-Stanford 281,903 1,992,636 59.39 60 1,370 78,797 3.95% 0.083 0.15 0.233 1.9

com-youtube 1,134,890 2,987,624 45.60 46 2,269 103,342 3.46% 0.193 0.807 1 5.1

web-Google 875,713 4,322,051 28.04 28 787 16,641 0.39% 0.336 0.11 0.446 6.2

WikiTalk 2,388,953 4,656,682 114.14 115 1,384 157,968 3.39% 0.195 0.935 1.13 4.5

youtube-growth 3,223,585 9,375,374 77.47 78 1,219 94,427 1.01% 0.982 0.768 1.75 18

as-skitter 1,694,616 11,094,209 89.40 90 915 73,480 0.66% 0.644 0.286 0.93 12

soc-flickr-und 1,715,255 15,555,041 468.83 469 3,135 1,469,797 9.45% 0.566 19.434 20 80

patent 3,774,768 16,518,947 40.13 41 730 25,697 0.16% 2.88 0.6 3.48 35

soc-pokec 1,632,803 22,301,964 41.13 42 8,974 368,613 1.65% 1.87 6.53 8.4 480

LiveJournal 4,843,953 42,845,684 229.85 228 3,639 661,891 1.54% 4.65 1.72 6.37 67

twitter-mpi 9,862,152 99,940,317 602.44 603 8,448 5,089,428 5.09% 5.36 164.64 170 624

tech-p2p 5,792,297 147,829,887 750.18 751 7,641 5,732,158 3.88% 19 283 302 1,671

uk-2002 18,459,128 261,556,721 471.50 472 3,429 1,231,751 0.47% 9.6 2.4 12 142

uk-2005 39,252,879 781,439,892 485.75 429 51,784 15,037,470 1.92% 26 77 103 515

webbase 115,554,441 854,809,761 816.92 804 9,990 6,631,895 0.78% 61 36 97 813

it-2004 41,290,577 1,027,474,895 2008.19 2,009 4,279 8,593,024 0.84% 30 53 83 1,523

twitter-2010 41,652,230 1,202,513,046 1643.30 1,644 11,619 17,996,107 1.50% 143 320 463 10,205

of Web Algorithmics
3
, the Koblenz Network Collection

4
, and the

network repository
5
. The statistics of the graphs are included in

Table 1. In particular, the largest graph twitter-2010 has 42 million

nodes and 1.2 billion undirected edges. A machine with an Intel(R)

Xeon(R) 3.4GHz CPU and 16GB main memory under Linux System

(64bit Debian) were employed to run the codes written in C++.
6

Eval-I: Construction Time of ds-Index. The construction time

is shown in Table 1 in two steps: the reduction step produces a

reduced graph G−; the flow step solves a parametric network-flow

problem on a flow network derived from G−. The size of ds-Index
is bounded by the size of G−. As Table 1 shows, the reduction step

reduces an average of 97% of the total number of edges from a graph

using an average of 14 seconds. The dramatic reduction of the graph

size enables (i) the algorithm of parametric network-flow in the

flow step to be completed in an average of 45 seconds and (ii) the

ds-Index to be stored in the main memory under general memory

settings. In particular, on the largest graph with 1.2 billion edges,

the reduced graph has only 18 million edges while the ds-Index
was constructed within 8 minutes in total.

Eval-II: Top-k Dense Subgraphs Identification. As an applica-

tion of ds-Index, we consider a concrete problem of finding multi-

ple dense subgraphs that was proposed by Balalau et al. [5]. This

problem aims at computing k subgraphs that maximize the sum-

mation of the subgraph densities while ensuring that the Jaccard

similarity between the node sets of every pair of subgraphs is at

most α . Here α is a user-given threshold. Balalau et al. proved

the NP-hardness of this problem and proposed aMinAndRemove
framework to find k optimal subgraphs approximately. LetG be the

3
http://law.di.unimi.it/datasets.php

4
http://konect.uni-koblenz.de/

5
http://networkrepository.com/

6
Our source code is publicly available at https://github.com/LijunChang/Cohesive_

subgraph_book/densest_subgraph

input graph. MinAndRemove reports k subgraphs in k iterations.

In each iteration,MinAndRemove reports a minimal densest sub-

graph S of G and then removes a fraction of (1 − α) vertices of S
from G. We plug the ds-Index into this framework to compute the

minimal densest subgraph of G in each iteration and denote this

algorithm as TopkDS. Note that, since the graph G is changing in

each iteration, ds-Index is constructed on k distinct graphs.

The results of running TopkDS on real graphs to compute top-10

dense subgraphs with α = 0.1 are illustrated in Table 1. The last

column shows the total running time of TopkDS. We can see that

our ds-Index algorithm can scale theMinAndRemove framework

to graphs with over one billion edges. The originalMinAndRemove
algorithm reported in [5] took 0.3 hour, 0.54 hour, 2.15 hours,

1.5 hours, and 1.29 hours, respectively, for processing graphs of

web-Stanford, com-youtube, web-Google, youtube-growth, and as-

skitter; in comparison, TopkDS took less than 18 seconds on these

graphs. The superiority of TopkDS over the existing algorithm

in [5] attributes to our efficient computation of minimal densest

subgraphs using ds-Index.

6 CONCLUSION
This paper unveils the distributions and relationships of the densest

subgraphs of a graphG under the density notion of average-degree.

Denote by L the size of the maximal densest subgraph of G. There
is an index called the ds-Index that encodes the structure of all the
densest subgraphs of G in O(L) space. With the ds-Index, all the
(minimal) densest subgraphs ofG can be enumerated optimally. Fur-

thermore, the construction of ds-Index is no more expensive than

the state-of-the-art solution for finding a single densest subgraph.

Acknowledgements. LijunChang is supported byARCDP160101513

and FT180100256.MiaoQiao is supported byMarsden FundUOA1732,

Royal Society of New Zealand.

http://law.di.unimi.it/datasets.php
http://konect.uni-koblenz.de/
http://networkrepository.com/
https://github.com/LijunChang/Cohesive_subgraph_book/densest_subgraph
https://github.com/LijunChang/Cohesive_subgraph_book/densest_subgraph

Deconstruct Densest Subgraphs WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] [n.d.]. full version, https://lijunchang.github.io/pdf/dds.pdf.

[2] T. Akiba, Y. Iwata, and Y. Yoshida. 2013. Linear-time enumeration of maximal

K-edge-connected subgraphs in large networks by random contraction. In Proc.
of CIKM’13.

[3] A. Angel, N. Koudas, N. Sarkas, and D. Srivastava. 2012. Dense Subgraph Mainte-

nance under Streaming Edge Weight Updates for Real-time Story Identification.

PVLDB 5, 6 (2012), 574–585.

[4] B. Bahmani, R. Kumar, and S. Vassilvitskii. 2012. Densest Subgraph in Streaming

and MapReduce. PVLDB 5, 5 (2012), 454–465.

[5] O. D. Balalau, F. Bonchi, T.-H. H. Chan, F. Gullo, and M. Sozio. 2015. Finding Sub-

graphs with Maximum Total Density and Limited Overlap. In Proc. of WSDM’15.
379–388.

[6] V. Batagelj and M. Zaversnik. 2003. An O(m) Algorithm for Cores Decomposition

of Networks. CoRR (2003).

[7] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos. 2013. CopyCatch:

stopping group attacks by spotting lockstep behavior in social networks. In Proc.
of WWW’13. 119–130.

[8] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E. Tsourakakis. 2015. Space-

and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass

Dynamic Streams. In Proc. of STOC’15. 173–182.
[9] N. Biggs, E. K. Lloyd, and R. J. Wilson. 1986. Graph Theory, 1736-1936. Clarendon

Press.

[10] C. Bron and J. Kerbosch. 1973. Finding All Cliques of an Undirected Graph

(Algorithm 457). CACM 16, 9 (1973), 575–576.

[11] Lijun Chang. 2019. Efficient Maximum Clique Computation over Large Sparse

Graphs. In Proc. of KDD’19. 529–538.
[12] Lijun Chang and Lu Qin. 2018. Cohesive Subgraph Computation over Large Sparse

Graphs. Springer Series in the Data Sciences.

[13] L. Chang, J. X. Yu, L. Q., X. Lin, C. Liu, and W. Liang. 2013. Efficiently computing

k-edge connected components via graph decomposition. In Proc. of SIGMOD’13.
[14] M. Charikar. 2000. Greedy approximation algorithms for finding dense compo-

nents in a graph. In Approximation Algorithms for Combinatorial Optimization,
Third International Workshop. 84–95.

[15] J. Cohen. 2008. Trusses: Cohesive Subgraphs for Social Network Analysis.

[16] M. Danisch, T.-H. H. Chan, and M. Sozio. 2017. Large Scale Density-friendly

Graph Decomposition via Convex Programming. In Proc. of WWW’17. 233–242.
[17] Y. Dourisboure, F. Geraci, and M. Pellegrini. 2007. Extraction and classification

of dense communities in the web. In Proc. of WWW’07. 461–470.
[18] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient Densest

Subgraph Computation in Evolving Graphs. In Proc. of WWW’15. 300–310.
[19] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin

Lin. 2019. Efficient Algorithms for Densest Subgraph Discovery. PVLDB 12, 11

(2019), 1719–1732.

[20] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. 1989. A Fast Parametric Maximum

Flow Algorithm and Applications. SIAM J. of Comp. 18, 1 (1989), 30–55.
[21] D. Gibson, R. Kumar, and A. Tomkins. 2005. Discovering Large Dense Subgraphs

in Massive Graphs. In PVLDB. 721–732.
[22] A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report.

Berkeley, CA, USA.

[23] V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. 2010. A Survey of Algorithms for

Dense Subgraph Discovery. In Managing and Mining Graph Data. 303–336.
[24] Robert Mokken. 1979. Cliques, clubs and clans. Quality & Quantity 13 (1979),

161–173.

[25] L. Qin, R. H. Li, L. Chang, and C. Zhang. 2015. Locally Densest SubgraphDiscovery.

In Proc. of KDD’15. 965–974.
[26] A. E. Sariyüce, C. Seshadhri, A. Pinar, and Ü. V. Çatalyürek. 2015. Finding

the Hierarchy of Dense Subgraphs using Nucleus Decompositions. In Proc. of
WWW’15. 927–937.

[27] S. B. Seidman and B. L. Foster. 1978. A graph-theoretic generalization of the

clique concept. Journal of Mathematical Sociology 6 (1978), 139–154.

[28] M. Sozio and A. Gionis. 2010. The community-search problem and how to plan a

successful cocktail party. In Proc. of KDD’10. 939–948.
[29] N. Tatti and A. Gionis. 2015. Density-friendly Graph Decomposition. In Proc. of

WWW’15. 1089–1099.
[30] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In

Proc. of WWW’15. 1122–1132.
[31] E. Valari, M. Kontaki, and A. N. Papadopoulos. 2012. Discovery of Top-k Dense

Subgraphs in Dynamic Graph Collections. In Proc. of SSDBM’12. 213–230.
[32] J. Wang and J. Cheng. 2012. Truss Decomposition in Massive Networks. PVLDB

5, 9 (2012).

A THE PROOF OF LEMMA 1
According to Equation 1, the capacity of a minimum s-t cut (S∗ ∪

{s}, S∗ ∪ {t}) is

c(S∗ ∪ {s}, S∗ ∪ {t}) = min

S ⊆V (G)
c(S ∪ {s}, S ∪ {t})

=2m + 2 min

S ⊆V (G)
(λ − ρ(S))|S |. (2)

We prove the correctness of Lemma 1 in three cases, respectively.

(1) Let S ′ be a densest subgraph of G. Since G is connected and

has at least two nodes, |S ′ | > 1. If λ < ρ∗(G) = ρ(S ′), then
minS ⊆V (G)(λ − ρ(S))|S | ≤ (λ − ρ(S

′))|S ′ | < 0. According to

Equation 2, c(S∗ ∪ {s}, S∗ ∪ {t}) < 2m.

(2) If λ ≥ ρ∗(G) then for any S ⊆ V (G), (λ−ρ(S))|S | ≥ 0. Besides,

when S = ∅, (λ − ρ(S))|S | = 0. Therefore, minS ⊆V (G)(λ −

ρ(S))|S | = 0 and thus c(S∗ ∪ {s}, S∗ ∪ {t}) = 2m.

(3) Consider any induced subgraph S ′′ ofG with ρ(S ′′) < ρ∗(G).
Since both ρ∗(G) and ρ(S ′′) take values from all possible

fractions between an integer in [0,m] and an integer in [0,n],
ρ∗(G) − ρ(S ′′) ≥ 1

n(n−1) . Therefore, there is no subgraph of

G having a density in range (ρ∗(G) − 1

n(n−1) , ρ
∗(G)). When

λ ∈ (ρ∗(G) − 1

n(n−1) , ρ
∗(G)), minS ⊆V (G)(λ − ρ(S))|S | takes

the minimum value only when S is the densest subgraph

of G with the largest cardinality. According to Equations 1

and 2, S∗ is the densest subgraph of G with the maximum

cardinality.

B THE PROOF OF LEMMA 3
Recall that, the capacity of cut (S∪{s}, S∪{t}) is c(S∪{s}, S∪{t}) =
2m + 2(λ − ρ(S))|S | (Equation 1). Besides, the critical flow network

H has λ = ρ∗(G), and S , ∅. Therefore, ρ(S) = λ = ρ∗(G) if and

only if c(S ∪ {s}, S ∪ {t}) = 2m. Since the capacity of the minimum

s-t cut ofH is 2m (Lemma 1), S is a densest subgraphG if and only

if (S ∪ {s}, S ∪ {t}) is a minimum cut ofH .

The equivalence between (2) and (3) directly follows from the

following extension to the max-flow min-cut theorem.

Lemma 11. Given a flow network ®G , let f be a maximum flow on
®G and let (X ,Y) be an s-t cut of ®G . (X ,Y) is a minimum s-t cut if and
only if all edges from X to Y are saturated under f .

Proof. The lemma is proved in two directions.

(1) We prove that if (X ,Y) is a minimum s-t cut then all edges

fromX toY must be saturated by contradiction. Assume that

there is an edge e fromX toY with f (e) < c(e), then the value
of the flow fromX toY is strictly smaller than the capacity of

cut (X ,Y), that is, Σe from X to Y f (e) < Σe from X to Y c(e) =
c(X ,Y). Therefore, the value of the flow is

val(f) =Σv ∈V (®G)\{s }, ⟨s,v ⟩∈E(®G) f (⟨s,v⟩)

=Σu ∈X \{s }, ⟨s,u ⟩∈E(®G) f (⟨s,u⟩) + Σv ∈Y , ⟨s,v ⟩∈E(®G) f (⟨s,v⟩)

Due to the conservation property of a flow,

Σu ∈X \{s },v ∈V (®G), ⟨u,v ⟩∈E(®G) f (⟨u,v⟩) = 0.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Lijun Chang and Miao Qiao

Therefore,

val(f) =Σu ∈X \{s }, ⟨s,u ⟩∈E(®G) f (⟨s,u⟩)

+ Σv ∈Y , ⟨s,v ⟩∈E(®G) f (⟨s,v⟩)

+ Σu ∈X \{s }Σv ∈V (®G), ⟨u,v ⟩∈E(®G) f (⟨u,v⟩) (3)

split the Term (3) into three cases

=Σu ∈X \{s }, ⟨s,u ⟩∈E(®G) f (⟨s,u⟩) (4)

+ Σv ∈Y , ⟨s,v ⟩∈E(®G) f (⟨s,v⟩)

+ Σu ∈X \{s }Σv ∈X \{s }, ⟨u,v ⟩∈E(®G) f (⟨u,v⟩) (5)

+ Σu ∈X \{s }Σv ∈Y , ⟨u,v ⟩∈E(®G) f (⟨u,v⟩)

+ Σu ∈X \{s }, ⟨u,s ⟩∈E(®G) f (⟨u, s⟩) (6)

Term (4) cancels Term (6) due to the antisymmetry property

of a flow, Term (5) is 0 due to the conservation property of a

flow. Therefore,

val(f) =Σv ∈Y , ⟨s,v ⟩∈E(®G) f (⟨s,v⟩) + Σu ∈X \{s }Σv ∈Y , ⟨u,v ⟩∈E(®G)) f (⟨u,v⟩)

=Σe from X to Y
f (e) < Σe from X to Y c(e) = c(X ,Y)

According to the max-flow min-cut theorem, the capacity

of a minimum cut equals the value of the maximum flow,

c(X ,Y) = val(f), contradiction.
(2) If all edges e fromX toY are saturated, thenval(f) = c(X ,Y).

According to max-flow min-cut theorem, since f is a maxi-

mum flow, there is no s-t cut with a capacity smaller than

val(f). (X ,Y) is therefore a minimum cut. □

C THE PROOF OF LEMMA 5
Denote by E+ = {e ∈ E(H)| f ∗(e) > 0} the set of edges with posi-

tive flow valued in the critical flow networkH . To prove Lemma 5,

it suffices to show that for every nodev ∈ V (G), there is a path from
v to t in the critical flow networkH with only E+ edges. This is be-
cause that if an edge ⟨u,v⟩ has f ∗(⟨u,v⟩) > 0, then the critical resid-

ual graphHf ∗ must include its reverse edge ⟨v,u⟩ since the residual
capacity of the reverse edge cf ∗ (⟨v,u⟩) = c(⟨v,u⟩) − f ∗(⟨v,u⟩) =
c(⟨v,u⟩) + f ∗(⟨u,v⟩) > 0.

Let v∗ be an arbitrary node in V (G). Let S be the union of {v∗}
and the set of all nodes in the critical flow network H that are

reachable from v∗ with only E+ edges. The definition of S implies

that for every node u in S , there is a path from v∗ to u with only

E+ edges; besides, any edge e inH from a node in S to V (H) \ S
has f ∗(e) ≤ 0. We prove by contradiction that t ∈ S .

We first prove that s < S . For any u ∈ V (G), we know from

Lemma 4 that the edge from s to u is saturated, thus, f ∗(u, s) =
−f ∗(s,u) = −d(u) < 0. Besides, there is no edge in H between s
and t . Therefore, all edges e to s has negative value of the flow, that
is, s cannot be reached by v∗ via edges in E+.

If t < S , since s < S , then S ⊆ V (G). Denote S = V (G) \ S . For an
edge e that is not in the critical flow networkH , we define f ∗(e) = 0

for convenience. For a nodew ∈ S , due to the conservation property
of a flow, the flow tow has

Σu ∈V (H) f
∗(⟨u,w⟩) = Σu ∈S f

∗(⟨u,w⟩) + Σu ∈S f
∗(⟨u,w⟩)

+f ∗(⟨t ,w⟩) + f ∗(⟨s,w⟩) = 0.

Aggregate overw , we have

Σw ∈S,u ∈V (H) f
∗(⟨u,w⟩) = Σw ∈S,u ∈S f

∗(⟨u,w⟩)

+Σw ∈S f
∗(⟨t ,w⟩) + Σw ∈S f

∗(⟨s,w⟩)

+Σw,u ∈S f
∗(⟨u,w⟩) = 0.

Due to the antisymmetry property, term Σw,u ∈S f
∗(⟨u,w⟩) = 0.

Besides, Σw ∈S f
∗(⟨s,w⟩) = Σu ∈Sd(u) ≥ d(v∗) > 0 because v∗ ∈ S .

Therefore, Σw ∈S,u ∈S f
∗(⟨u,w⟩) + Σw ∈S f

∗(⟨t ,w⟩) < 0. However,

the construction of S indicates that, for everyw ∈ S , all edges from
w to V (H) \ S are non-positive and therefore, Σu ∈S f

∗(⟨u,w⟩) ≥ 0

and f ∗(⟨t ,w⟩) ≥ 0, contradiction.

D PROPERTIES OF THE CRITICAL
COMPONENT GRAPH

Lemma 12 (Critical Properties). The critical component graph
HC of the critical residual graphHf ∗ has the following properties:

(1) the component scc(t) of the target node t has no incoming edge;
(2) the component scc(s) of the source node s has no outgoing edge;
(3) scc(t) has an edge to scc(s) if and only if the component scc(t)

has a node other than t , i.e., |scc(t)| > 1;
(4) scc(s) has no nodes other than s itself, i.e., scc(s) = {s}.

Besides, for each componentC ∈ C(Hf ∗)with neither s nor t included,
(5) there is an edge from scc(t) to C , and
(6) there is an edge from C to scc(s).

Proof. The correctness of this lemma depends on Lemma 4 and

Lemma 5.

The proof of Properties 2, 3, 4, 6. Proved directly by Lemma 4.

The proof of Property 1. If there is an incoming edge in the critical

component graph from a component C to scc(t), let vc be any

node in C , then vc , t and vc can reach t in the critical residual

graph, that is, vc { t onHf ∗ . Since scc(s) has no outgoing edge

(Property (2)),vc , s . Therefore,vc ∈ V (G). According to Lemma 5,

t { vc in the critical residual graphHf ∗ . v and t are then in the

same strongly connected component, contradicting that vc ∈ C ,
scc(t). Therefore, scc(t) has no incoming edge.

The proof of Property 5. Letv be a non-trivial node inV (G) \scc(t) \

scc(s). Lemma 5 shows that t { v in the critical residual graph

Hf ∗ . If v { t , then v ∈ scc(t), contradiction. Therefore, v ̸{ t in
Hf ∗ . Since the critical flow network H has an edge ⟨v, t⟩ whose
capacity is 2ρ∗(G) > 0, v ̸{ t in the critical residual graph Hf ∗

means that edge ⟨v, t⟩ is saturated under f ∗. Therefore, the residual
capacity of the reverse edge ⟨t ,v⟩ is positive, that is, there is an
edge from t to v inHf ∗ . Therefore, there is an edge from scc(t) to
all the components other than scc(s) in the component graph. This

completes the proof of Lemma 12. □

E THE PROOF OF LEMMA 9
We prove the lemma by contradiction. SinceG is a connected graph

with at least two nodes, S has at least two nodes. Let v be the node

in S with dS (v) < ⌈ρ
∗(G)⌉, where dS (v) is the degree of v in the

subgraph S . Then, the density of S \ {v} is

ρ(S \ {v}) =
ρ∗(G) × |S | − dS (v)

|S | − 1
> ρ∗(G),

contradicting the maximality of the density of ρ∗(G). Thus, the
lemma holds.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Densest Subgraph
	2.2 Parametric Flow Network and FSDS

	3 Deconstruct Densest Subgraphs
	3.1 Space Complexity of ds-Index
	3.2 Enumerate All Densest Subgraphs
	3.3 Enumerate Minimal Densest Subgraphs
	3.4 Scale the Index Construction

	4 Related Works
	5 Experiments
	6 Conclusion
	References
	A The Proof of Lemma 1
	B The Proof of Lemma 3
	C The Proof of Lemma 5
	D Properties of the Critical Component Graph
	E The Proof of Lemma 9

