Maximum *k*-Plex Computation: Theory and Practice

Lijun Chang, Kai Yao

School of Computer Science The University of Sydney

June 11, 2024

Graphs are Everywhere

ightharpoonup A graph G=(V,E) consists of a set V of vertices and a set E of edges

Figure: Social networks

Figure: Graph of texts

Figure: Web graphs

Figure: Internet of things

Real Graphs are usually Globally Sparse but Locally Dense

► The entire graph is sparse, but there are groups of vertices with high concentration of edges within them.

Graphs	n	m	$d_{avg}(G)$	$d_{max}(G)$	$\omega(G)$
as-Skitter	1,694,616	11,094,209	13.09	35,455	67
soc-LiveJournal1	4,843,953	42,845,684	17.69	20,333	321
uk-2005	39,252,879	781, 439, 892	39.82	1,776,858	589
it-2004	41, 290, 577	1,027,474,895	49.77	1,326,744	3,222

Table: Statistics of some real graphs ($\omega(G)$ is the clique number of G)

- Finding dense subgraphs is a fundamental problem with many applications.
 - community detection in social networks
 - anomaly detection in financial networks
 - protein complexes detection in biological networks

_ ...

k-Plex

- ► The clique model, requiring all vertices to be connected to each other, represents the most dense subgraph model.
 - Clique-related problems have been extensively studied.
 - E.g., enumerate all maximal cliques, find a maximum clique.
- However, the clique model is often too restrictive for applications
 - Various clique relaxations have been formulated in the literature, such as quasi-clique, k-plex, k-club, and k-defective clique.
- \blacktriangleright k-plex allows each vertex in the subgraph to miss up-to k-1 neighbors (excluding the vertex itself)
 - $-\{v_1, v_2, v_3, v_4\}$ and $\{v_6, v_7, v_8, v_9\}$ are two maximum 2-plexes.

Maximum *k*-Plex Computation

- ► The maximum *k*-plex computation problem aims to find the *k*-plex with the largest number of vertices
 - It is an NP-hard problem.
- Existing exact algorithms
 - BS¹, BnB², Maplex³, KpLeX⁴, and kPlexS⁵
 - kPlexS only considers k-plexes of size at least 2k-1
 - ▶ All such *k*-plexes are of diameter at most 2.
 - KpLeX is general, but performs much worse than kPlexS when the maximum k-plex size is at least 2k-1.
 - None of these algorithms, except BS, beat the trivial time complexity of $\mathcal{O}^*(2^n)$.
 - ightharpoonup The $\mathcal{O}^*(\cdot)$ notation hides polynomial factors.

¹Mingyu Xiao et al. "A Fast Algorithm to Compute Maximum k-Plexes in Social Network Analysis". In: Proc. of AAAI'17. 2017.

² Jian Gao et al. "An Exact Algorithm for Maximum k-Plexes in Massive Graphs". In: *Proc. IJCAl'18.* 2018.

³Yi Zhou et al. "Improving Maximum k-plex Solver via Second-Order Reduction and Graph Color Bounding". In: *Proc. of AAAI'21*. 2021.

⁴Hua Jiang et al. "A New Upper Bound Based on Vertex Partitioning for the Maximum K-plex Problem". In: Proc. of IJCAI'21. 2021.

⁵Lijun Chang, Mouyi Xu, and Darren Strash. "Efficient Maximum k-Plex Computation over Large Sparse Graphs". In: PVLDB 16.2 (2022).

Summary of Time Complexities

Algorithm	Time complexity	Problem	Limitation
BS ⁶	$\mathcal{O}^*(eta_k^n)$	Maximum	None
FaPlexen ⁷	$\mathcal{O}^*(eta_k^n)$	Enumeration	None
ListPlex ⁸	$\mathcal{O}^*((\alpha\Delta)^{k+1}eta_k^{lpha})$	Enumeration	k -plex size $\geq 2k-1$
FP ⁹	$\mathcal{O}^*(eta_k^{lpha\Delta})$	Enumeration	k -plex size $\geq 2k-1$
kPlexT	$\mathcal{O}^*((\alpha\Delta)^{k+1}\gamma_k^{lpha})$	Both problems	k -plex size $\geq 2k-1$
kPlexT	$\mathcal{O}^* \left((\alpha \Delta)^{k+1} \gamma_k^{\alpha} + \min\{ \gamma_k^n, n^{2k-2} \} \right)$	Both problems	None

Table: A summary of the time complexities (β_k and γ_k are constants smaller than 2 that only depend on k; $\gamma_k < \beta_k$; α is the degeneracy and Δ is the maximum degree of G; kPlexT is our algorithm)

⁶ Mingyu Xiao et al. "A Fast Algorithm to Compute Maximum k-Plexes in Social Network Analysis". In: Proc. of AAAI'17. 2017.

⁷Yi Zhou et al. "Enumerating Maximal k-Plexes with Worst-Case Time Guarantee". In: Proc. of AAAI'20. 2020, pp. 2442–2449.

⁸Zhengren Wang et al. "Listing Maximal k-Plexes in Large Real-World Graphs". In: *Proc. of WWW* '22. 2022, pp. 1517–1527.

⁹Qiangqiang Dai et al. "Scaling Up Maximal *k*-plex Enumeration". In: *Proc. of CIKM*'22. 2022, pp. 345–354.

Our (Branch and Bound) Algorithm

```
Algorithm 1: kPlexBB(G, k)
  Input: A graph G and an integer k \geq 2
  Output: A maximum k-plex in G
1 P \leftarrow \emptyset:
2 Branch&Bound(G, k, \emptyset, P);
\mathbf{return}\ P;
  Procedure Branch&Bound(q, k, S, P)
  /* q is the working subgraph, S is the partial solution
4 (g', S') \leftarrow \text{apply reduction rules to } (g, S); /* e.g., RR1--RR3 */;
5 if a' is a k-plex then
6 | if |V(g')| > |P| then P \leftarrow V(g');
7 else
      b \leftarrow \mathsf{ChooseBranchingVertex}(g', k, S');
      Branch&Bound(q', k, S' \cup \{b\}, P); /* Add b into S' */:
      Branch&Bound(g' \setminus \{b\}, k, S', P); /* Remove b from g' */;
```

Recursion Tree of Our Algorithm

- ightharpoonup Each node I=(g,S) is a backtracking instance
 - S must be included, $V(g) \setminus S$ are the candidate vertices
- ▶ Prove the time complexity by induction on the recursion tree

Time Complexity Proof (General Idea)

- ▶ Consider a backtracking instance I = (g, S)
 - S must be included, $V(g) \setminus S$ are the candidate vertices
 - The instance size is $|I| = |V(g) \setminus S$.
- ► Worst-case scenario of the existing algorithms
 - Let $u \in V(g) \setminus S$ be a vertex that has exactly k non-neighbors $\{v_1, v_2, \dots, v_k\}$
 - It generates k+1 branches
 - 1. -u (remove u from the graph); the instance size is reduced by 1
 - 2. +u, $-v_1$ (add u to the solution and remove v_1); the instance size is reduced by 2
 - 3. $+\{u, v_1, \dots, v_{i-1}\}, -v_i$, for $2 \le i \le k$; the instance size is reduced by i+1
 - The time complexity is $\mathcal{O}^*(\beta_k^n)$ where β_k is the largest real root of $x^{|I|} = x^{|I|-1} + \cdots + x^{|I|-k} + x^{|I|-(k+1)}$, equivalent to $x^{k+2} 2x^{k+1} + 1 = 0$.
- Our algorithm
 - We generate k+1 branches
 - 1. +u; the instance size is reduced by 1
 - 2. $-\{u, v_1, \ldots, v_{i-1}\}, +v_i$, for $1 \le i \le k-1$; the instance size is reduced by i+1
 - 3. $-\{u, v_1, \ldots, v_{k-1}\}$, $+\{v_k, \text{ all of } v_k \text{ 's non-neighbors}\}$; reduced by at least k+2
 - The time complexity is $\mathcal{O}^*(\gamma_k^n)$ where γ_k is the largest real root of $x^{|I|} = x^{|I|-1} + \dots + x^{|I|-k} + x^{|I|-(k+2)}$

Our Two-Stage Approach to Reduce the Exponent

Algorithm 2: kPlexT(G, k)

```
1 P \leftarrow \emptyset:
  /* Stage-I
                                                                                          */
2 Let (v_1, \ldots, v_n) be a degeneracy ordering of the vertices of G;
3 for each v_i \in V(G) do
       Let A be v_i's neighbors that are in \{v_{i+1}, \ldots, v_n\}, i.e.,
       A \leftarrow N(v_i) \cap \{v_{i+1}, \dots, v_n\}:
     Let g be the subgraph of G induced by N[A] \cap \{v_i, \dots, v_n\};
       Branch&Bound(g, k, \{v_i\}, P);
  /* Stage-II
                                                                                          */
7 if |P| < 2k - 2 then Branch&Bound(G, k, \emptyset, P);
8 return P:
```

- ▶ kPlexT runs in $\mathcal{O}(n \times (\alpha \Delta)^{k+1} \times \gamma_k^{\alpha})$ time if the maximum k-plex size $\geq 2k-1$.
 - Any two non-adjacent vertices in k-plex $\geq 2k-1$ must have common neighbors.
- ightharpoonup kPlexT runs in $\mathcal{O}(n \times (\alpha \Delta)^{k+1} \times \gamma_k^{\alpha} + m \times \min\{\gamma_k^n, n^{2k-2}\})$ time otherwise.

Other Contributions (in the paper)

- With slight modification, kPlexT runs in $\mathcal{O}^*((\alpha\Delta)^{k+1}\times(k+1)^{\alpha+k-\omega_k(G)})$ time when $\omega_k(G)\geq 2k-1$.
 - $\omega_k(G)$ is the maximum k-plex size.
 - $\alpha + k$ is an upper bound of $\omega_k(G)$.
- We also propose a new reduction rule and a better initialization method for improving the practical performance
- ightharpoonup Our improved time complexities also hold for enumerating all maximal k-plexes, and maximal k-biplexes.

Performance Study

Figure: Against existing algorithms on 10th DIMACS graphs (vary time limit)

▶ The 10th DIMACS graphs collection contains 84 graphs with up to 5.09×107 vertices from the 10th DIMACS implementation challenge.

Conclusion

- We improved the time complexity for maximum k-plex computation, maximal k-plex enumeration, and maximal k-biplex enumeration.
- Our algorithm also runs faster than the existing algorithms in practice for maximum k-plex computation.
- ► The source code is available at https://lijunchang.github.io/Maximum-kPlex-v2/