Maximum £-Plex Computation:
Theory and Practice

Graphs are Everywhere

’\.Jil- - :l-,- --ﬁ i_
.u n.n." E .O“
Y, L - > i B -
[IR

=1—q =0

Figure: Graph of texts Figure: Internet of things

2/13

Real Graphs are usually Globally Sparse but Locally Dense

> The entire graph is sparse, but there are groups of vertices with high
concentration of edges within them.

Graphs n M|dovg(G)| dmas(G)| w(G)
as-Skitter 1,694,616 11,094,209 13.09 35,455 67
soc-LiveJournall| 4,843,953 42,845,684 17.69 20,333 321
uk-2005 39,252,879| 781,439,892| 39.82|1,776,858| 589
it-2004 41,290,577|1,027,474,895| 49.77|1,326,744|3, 222

» Finding dense subgraphs is a fundamental problem with many applications.

Table: Statistics of some real graphs (w(G) is the clique number of G)

— community detection in social networks
— anomaly detection in financial networks

— protein complexes detection in biological networks

3/13

k-Plex

» The clique model, requiring all vertices to be connected to each other, represents
the most dense subgraph model.
— Clique-related problems have been extensively studied.
— E.g., enumerate all maximal cliques, find a maximum clique.
> However, the clique model is often too restrictive for applications
— Various clique relaxations have been formulated in the literature, such as
quasi-clique, k-plex, k-club, and k-defective clique.
> k-plex allows each vertex in the subgraph to miss up-to k& — 1 neighbors (excluding
the vertex itself)
— {v1, va,v3,v4} and {vg, v7,vs,v9} are two maximum 2-plexes.

4/13

Maximum k-Plex Computation

» The maximum k-plex computation problem aims to find the k-plex with the
largest number of vertices
— It is an NP-hard problem.
> Existing exact algorithms
— BS', BnB?, Maplex3, KpLeX*, and kPlexS®
kPlexS only considers k-plexes of size at least 2k — 1
> All such k-plexes are of diameter at most 2.
KpLeX is general, but performs much worse than kPlexS when the maximum k-plex

size is at least 2k — 1.
— None of these algorithms, except BS, beat the trivial time complexity of O*(2").

» The O*(-) notation hides polynomial factors.

1V\/Iir\gyu Xiao et al. “A Fast Algorithm to Compute Maximum k-Plexes in Social Network Analysis”.

2Jian Gao et al. “An Exact Algorithm for Maximum k-Plexes in Massive Graphs”. .

3Yi Zhou et al “Improving Maximum k-plex Solver via Second-Order Reduction and Graph Color Bounding”.
*Hua Jiang et al. “A New Upper Bound Based on Vertex Partitioning for the Maximum K-plex Problem”.

5Lijun Chang, Mouyi Xu, and Darren Strash. “Efficient Maximum k-Plex Computation over Large Sparse Graphs”.

5/13

Summary of Time Complexities

Algorithm Time complexity Problem Limitation
BS® O*(B1) Maximum None
FaPlexen’ O*(8y) Enumeration None
ListPlex® O* ((aA)F+132) Enumeration k-plex size > 2k — 1
FP° O*(B2) Enumeration k-plex size > 2k — 1
kPlexT O* ((aA)F+1ye) Both problems k-plex size > 2k — 1
kPlexT O ((aA)* 92 + min{y}},n**~2}) Both problems None

Table: A summary of the time complexities (5 and 7y are constants smaller than 2 that only
depend on k; v, < Bk; « is the degeneracy and A is the maximum degree of G; kPlexT is our
algorithm)

6Mingyu Xiao et al. “A Fast Algorithm to Compute Maximum k-Plexes in Social Network Analysis”.
7Yi Zhou et al “Enumerating Maximal k-Plexes with Worst-Case Time Guarantee”.

8Zl'wengren Wang et al. “Listing Maximal k-Plexes in Large Real-World Graphs”.

9Q'\angqiang Dai et al. “Scaling Up Maximal k-plex Enumeration”.

6/13

Our (Branch and Bound) Algorithm

Algorithm 1: kPlexBB(G, k)

Input: A graph GG and an integer k > 2
Output: A maximum k-plex in G
P«

Branch&Bound(G, k, 0, P);

return P;

Procedure Branch&Bound(g, k, S, P)
/* g is the working subgraph, S is the partial solution */
(¢',S") < apply reduction rules to (g,S); /* e.g., RR1--RR3 */;
if ¢’ is a k-plex then
| if [V(g')| > |P| then P+ V(g');

else
b + ChooseBranchingVertex(g', k, S');
Branch&Bound(¢', k, S" U {b}, P); /* Add b into S’ */;
Branch&Bound(g" \ {b}, %, S’, P); /* Remove b from ¢’ */;

7/13

Recursion Tree of Our Algorithm

—+v @ —V1
@ @

+v V2 +v2 —V2

+o N +v3 N +v V3 +v - W 3
o ¢ QO O O) O
+vgd ‘s oy 1 vl U4 oy 4 oy vy 4 1 vy 4 g\ 4

» Each node I = (g, 5) is a backtracking instance
— S must be included, V(g) \ S are the candidate vertices

» Prove the time complexity by induction on the recursion tree

8/13

Time Complexity Proof (General Idea)

» Consider a backtracking instance I = (g, .5)
— S must be included, V(g) \ S are the candidate vertices
— The instance size is [I| = [V (g) \ S.
> Worst-case scenario of the existing algorithms
— Let u € V(g) \ S be a vertex that has exactly k non-neighbors {vy,ve,...,v;}
— It generates k + 1 branches
1. —u (remove u from the graph); the instance size is reduced by 1
2. 4u, —v1 (add u to the solution and remove v1); the instance size is reduced by 2
3. +{u,v1,...,vi—1}, —v;, for 2 < i < k; the instance size is reduced by i + 1
— The time complexity is O*(8}) where [y, is the largest real root of
ol = g1 oo gHl=k g 1=(k+1) equivalent to z#+2 — 2281 41 = 0.
» Our algorithm
— We generate k + 1 branches
1. +u; the instance size is reduced by 1
2. —{u,v1,...,vi—1}, +v;, for 1 <i < k —1; the instance size is reduced by i + 1
3. —{u,v1,...,v6—1}, +{vk,all of vx's non-neighbors}; reduced by at least k + 2
— The time complexity is O*(y}!) where v, is the largest real root of
2l = =1 oo 4 gl =k o plI=(k+2) 9/13

Our Two-Stage Approach to Reduce the Exponent

Algorithm 2: kPlexT(G, k)

1 P+ 0;
/* Stage-I */
2 Let (v1,...,v,) be a degeneracy ordering of the vertices of G;
3 for each v; € V(G) do
4 Let A be v;'s neighbors that are in {vit1,...,v.}, i€,

A+ N(v)) N{vit1,.--,0n}:
5 Let g be the subgraph of G induced by N[A] N {v;,...,vn};
6 Branch&Bound(g, k, {v:}, P);

/* Stage-II */
7 if |P| < 2k — 2 then Branch&Bound(G, k, 0, P);
8 return P,

> kPlexT runs in O(n x (aA)k+L x 42) time if the maximum k-plex size > 2k — 1.
— Any two non-adjacent vertices in k-plex > 2k — 1 must have common neighbors.

> kPlexT runs in O(n x (@A)*! x 4@ +m x min{y}’, n?*~2}) time otherwise. 10/13

Other Contributions (in the paper)

> With slight modification, kPlexT runs in O*((aA)F+1 x (k + 1) tF=<k(@)) time
when w(G) > 2k — 1.

— wi(G) is the maximum k-plex size.
— a+ k is an upper bound of wy(G).

> We also propose a new reduction rule and a better initialization method for
improving the practical performance

» Our improved time complexities also hold for enumerating all maximal k-plexes,
and maximal k-biplexes.

11/13

Performance Study

-e- kPlexT - kPlexS -#- kPlex-gap -~A- KpleX -@- FP

e B
» o » i » s
g 601 g e x g g
5 g | g e e {]
R g
< £ %7 = 40 X P S = 7 R R
o ° ¥ ° o P I —y
g s g ¥ P ; g = y o =
g 3 g L Gt
* #* o * A # 207 4T
& T 2014 [-
~ kel S S S S S S ~ el S S S S S S ~ kel S S S S S S ~ kel S S S S S S
~ il S S S S ~ kel S S S S ~ ” S S S S ~ el S S S S
SRS R P R
Time limit (seconds) Time limit (seconds) Time limit (seconds) Time limit (seconds)

(a) k=3 (b) k=5 () k=17 (d) k =10

Figure: Against existing algorithms on 10th DIMACS graphs (vary time limit)

» The 10th DIMACS graphs collection contains 84 graphs with up to 5.09 x 107
vertices from the 10th DIMACS implementation challenge.

12/13

Conclusion

> We improved the time complexity for maximum k-plex computation, maximal
k-plex enumeration, and maximal k-biplex enumeration.

» Our algorithm also runs faster than the existing algorithms in practice for
maximum k-plex computation.

» The source code is available at
https://lijunchang.github.io/Maximum-kPlex-v2/

13/13

https://lijunchang.github.io/Maximum-kPlex-v2/

