Efficient Maximum £-Defective
Clique Computation with Improved
Time Complexity

Graphs are Everywhere

’\.Jil- - :l-,- --ﬁ i_
.u n.n." E .O“
Y, L - > i B -
[IR

=1—q =0

Figure: Graph of texts Figure: Internet of things

3/13

Real Graphs are usually Globally Sparse but Locally Dense

> The entire graph is sparse, but there are groups of vertices with high
concentration of edges within them.

Graphs n M|dovg(G)| dmas(G)| w(G)
as-Skitter 1,694,616 11,094,209 13.09 35,455 67
soc-LiveJournall| 4,843,953 42,845,684 17.69 20,333 321
uk-2005 39,252,879| 781,439,892| 39.82|1,776,858| 589
it-2004 41,290,577|1,027,474,895| 49.77|1,326,744|3, 222

» Finding dense subgraphs is a fundamental problem with many applications.

Table: Statistics of some real graphs (w(G) is the clique number of G)

— community detection in social networks
— anomaly detection in financial networks

— protein complexes detection in biological networks

4/13

k-Defective Clique

» The clique model, requiring all vertices to be connected to each other, represents
the most dense subgraph model.
— Clique-related problems have been extensively studied.
— E.g., enumerate all maximal cliques, find a maximum clique.
» However, the clique model is often too restrictive for applications
— Various clique relaxations have been formulated in the literature, such as
quasi-clique, k-plex, k-club, and k-defective clique.
> k-defective clique allows the subgraph to miss up-to k edges (in total)
— For the example graph below, the maximum clique size is 4, while the maximum
k-defective clique size for any k <4 is 4 + k.

5/13

State of the Art of Maximum k-Defective Clique Computation

» It is NP-hard to compute the maximum (vertex) k-defective clique

» The state-of-the-art time complexity is achieved by the MADEC™ algorithm
proposed in!, which runs in O*(o%) time.
— 0y < 2 is the largest real root of the equation z2*+3 — 222F+2 1 1 = (.

» KDBB proposed in? is practically faster than MADEC*

— KDBB is still inefficient in practice.
— The time complexity of KDBB is the trivial O*(2").

1><Iaoyu Chen et al. “Computing maximum k-defective cliques in massive graphs”.

2 Jian Gao et al. “An Exact Algorithm with New Upper Bounds for the Maximum k-Defective Clique Problem in Massive Sparse Graphs”.

6/13

Our Contribution: Improve the Time Complexity

Algorithm 1: kDC(G, k)

C* 0

Branch&Bound(G, 0);

return C*;

Procedure Branch&Bound(g, S)

(¢',8") < apply reduction rules RR1 and RR2 to (g, 9);

if ¢’ is a k-defective clique then update C* by V(g') and return;

b + a vertex of V(g') \ S’ that has at least one non-neighbor in S’; /* If no
such vertex, b is an arbitrary vertex of V(g')\ S */;

Branch&Bound(g’, S’ U b); /* Left branch includes b */;

Branch&Bound(g’ \ b, S’); /* Right branch excludes b */;

RR1. Given an instance (g,.5), for a vertex u € V(g) \ S satisfying
|E(S Uu)| > k, we remove u from g.
RR2. Given an instance (g, .5), for a vertex u € V(g) \ S satisfying

|E(SUw)| <k and dy(u) > |V (g)] — 2, we greedily add u to S. .

Our Contribution: Improve the Time Complexity

+by,

\Loi1| = |To] — (k +2) (T G | Ity | = [To] — (k+ 1)

I'=(g,5) and [I| = [V(g) \ 5|.

After exhaustively applying RR1 and RR2, the resulting instance (g, .S) satisfies

the condition that all vertices of V(g) \ S have at least two non-neighbors in g.

Thus, there exists a sequence of vertices {bo, ..., bx_1, b} such that after adding

them to S, we can remove at least one vertex by RR1.

The time complexity is O*(v}) where ~y is the largest real root of

gl = =1 oo g =1 o lT=(k42) - equivalent to 2K 13 — 22542 11 = 0.
8/13

Our Contribution: Improve the Practical Performance

> A coloring of a graph is assigning each vertex a color such that for every edge in
the graph, its two end-points have different colors.

» Given an instance (g,.5) and a coloring of V(g) \ S with ¢ colors {1,... ¢}, let
1,72, ..., be the partitioning of V(g) \ S based on their colors.
— Each m; consists of all vertices with color 7 and thus is an independent set.

» The existing graph coloring-based upper bound is
181+ X5, min (| 255])

— An independent set with > | ZVEh+L V;’““J vertices will induce > k missing edges
9/13

Our Contribution: Improve the Practical Performance

» Drawbacks of the existing upper bound |S| 4+ >"¢_; min (LL VQSI“'HJ : |7TZ|>

— It considers 7y, ..., 7. independently, includes much more vertices than necessary.
> Suppose |m;| > L@J V1 < i < ¢, then the upper bound is |S| + ¢ - L@j
> But obviously |S| + ¢+ k is a much smaller upper bound (e.g., when c is large)
— It does not consider the non-edges in .S, and the non-edges between S and V(g) \ S.
» Our upper bound
— For each ;, sort its vertices into non-decreasing order regarding [N s(-)|, and define
the weight of the j-th vertex in the sorted order, denoted v;,, to be
w(vi;) = |Ns(vi;)| +j — 1, where the index j starts from 1.
— Let vy,v9,..., be an ordering of V(g) \ S in non-decreasing order regarding their
weights w(+).
— The maximum k-defective clique in the instance (g, S) is of size at most |S| plus the
largest i such that |[E(S)| + Z;Zl w(v;) < k.
> We also propose two reductioin rules for practical performance. See our paper.
10/13

Performance Study

Real-world graphs

Facebook graphs

DIMACS10&SNAP

kDC KDBB MADECS | kbDC KDBB MADECS | kDC KDBB MADEC}
k=1 133 117 115 114 110 110 37 36 36
k=3 130 107 94 114 110 104 37 35 31
k=5 127 104 81 114 108 78 37 34 28
k=10 | 119 85 36 111 109 9 36 30 15
k=15 | 110 68 26 101 103 0 29 25 10
k=20 | 104 56 20 88 80 0 27 22 6

Table: Number of solved instances by the algorithms kDC, KDBB and MADECP+ with a time

limit of 3 hours (best performers are highlighted in bold)

> The real-world graphs collection contains 139 real-world graphs from the Network Data

Repository with up to 5.87 x 107 vertices and 1.06 x 10® undirected edges.

> The Facebook graphs collection contains 114 Facebook social networks from the
Network Data Repository with up to 5.92 x 107 vertices and 9.25 x 107 undirected edges.

» The DIMACS10&SNAP graphs collection contains 37 graphs with up to 1.04 x 106

vertices and 6.89 x 10° undirected edges.

11/13

-4+ kDC -%- kDC/RR3&4

= =
o N
o o

o]
o

#solved instances

(=)
o

Time limit (seconds)

(a) k=10

Performance Study

#solved instances

=
o
o

o]
o

=)}
o

-« kDC/UB1 ->- kDC-Degen

S QO
S O
N m S O 9D
)
Time limit (seconds)

(b) k=15

-®- KDBB

#solved instances

i
o
o

o]
o

=)}
o

N
o

Time limit (seconds)

(c) k=20

Figure: Number of solved instances for real-world graphs (vary time limit)

» kDC/UB1 is kDC without our new upper bound.

» kDC/RR3&4 is kDC without our new practical reduction rules.
» kDC-Degen: kDC with the initial solution computed by Degen.

12/13

Conclusion

> We improved the time complexity of maximum k-defective clique computation
from O*(75,) to O*(v}}).
> We also significantly improved the practical performance.

> The source code is available at
https://lijunchang.github.io/Maximum-kDC/

> We recently futher improved the time complexity to O*(y;_;) in3

3Lijun Chang. “Maximum Defective Clique Computation: Improved Time Complexities and Practical Performance”.
2403.07561.

13/13

https://lijunchang.github.io/Maximum-kDC/
https://arxiv.org/abs/2403.07561

	Introduction

