
Efficient Maximum k-Defective
Clique Computation with Improved
Time Complexity

Lijun Chang

School of Computer Science
The University of Sydney

June 11, 2024

Graphs are Everywhere

▶ A graph G = (V,E) consists of a set V of vertices and a set E of edges

Figure: Social networks

Figure: Graph of texts

Figure: Web graphs

Figure: Internet of things

3/13

Real Graphs are usually Globally Sparse but Locally Dense

▶ The entire graph is sparse, but there are groups of vertices with high
concentration of edges within them.

Graphs n m davg(G) dmax(G) ω(G)
as-Skitter 1, 694, 616 11, 094, 209 13.09 35, 455 67

soc-LiveJournal1 4, 843, 953 42, 845, 684 17.69 20, 333 321
uk-2005 39, 252, 879 781, 439, 892 39.82 1, 776, 858 589
it-2004 41, 290, 577 1, 027, 474, 895 49.77 1, 326, 744 3, 222

Table: Statistics of some real graphs (ω(G) is the clique number of G)

▶ Finding dense subgraphs is a fundamental problem with many applications.
– community detection in social networks
– anomaly detection in financial networks
– protein complexes detection in biological networks
– · · ·

4/13

k-Defective Clique

▶ The clique model, requiring all vertices to be connected to each other, represents
the most dense subgraph model.

– Clique-related problems have been extensively studied.
– E.g., enumerate all maximal cliques, find a maximum clique.

▶ However, the clique model is often too restrictive for applications
– Various clique relaxations have been formulated in the literature, such as

quasi-clique, k-plex, k-club, and k-defective clique.
▶ k-defective clique allows the subgraph to miss up-to k edges (in total)

– For the example graph below, the maximum clique size is 4, while the maximum
k-defective clique size for any k ≤ 4 is 4 + k.

5/13

State of the Art of Maximum k-Defective Clique Computation

▶ It is NP-hard to compute the maximum (vertex) k-defective clique

▶ The state-of-the-art time complexity is achieved by the MADEC+ algorithm
proposed in1, which runs in O∗(σn

k) time.

– σk < 2 is the largest real root of the equation x2k+3 − 2x2k+2 + 1 = 0.

▶ KDBB proposed in2 is practically faster than MADEC+

– KDBB is still inefficient in practice.
– The time complexity of KDBB is the trivial O∗(2n).

1Xiaoyu Chen et al. “Computing maximum k-defective cliques in massive graphs”. In: Comput. Oper. Res. 127 (2021), p. 105131.
2Jian Gao et al. “An Exact Algorithm with New Upper Bounds for the Maximum k-Defective Clique Problem in Massive Sparse Graphs”. In:

Proc. of AAAI’22. 2022, pp. 10174–10183.

6/13

Our Contribution: Improve the Time Complexity

Algorithm 1: kDC(G, k)

1 C∗ ← ∅;
2 Branch&Bound(G, ∅);
3 return C∗;

Procedure Branch&Bound(g, S)
4 (g′, S′)← apply reduction rules RR1 and RR2 to (g, S);
5 if g′ is a k-defective clique then update C∗ by V (g′) and return;
6 b← a vertex of V (g′) \ S′ that has at least one non-neighbor in S′; /* If no

such vertex, b is an arbitrary vertex of V (g′) \ S′ */;
7 Branch&Bound(g′, S′ ∪ b); /* Left branch includes b */;
8 Branch&Bound(g′ \ b, S′); /* Right branch excludes b */;

RR1. Given an instance (g, S), for a vertex u ∈ V (g) \ S satisfying
|E(S ∪ u)| > k, we remove u from g.

RR2. Given an instance (g, S), for a vertex u ∈ V (g) \ S satisfying
|E(S ∪ u)| ≤ k and dg(u) ≥ |V (g)| − 2, we greedily add u to S.

7/13

Our Contribution: Improve the Time Complexity

I2(k+1)

I2

I1

I0+b0

+b1

· · · −b2

−b1

−b0

Ik+bk −bk

Ik+1

Ik+2

Ik+3

Ik+4

|Ik+2| = |I0| − 1

|Ik+3| = |I0| − 2

|I2(k+1)| = |I0| − (k + 1)|Ik+1| = |I0| − (k + 2)

▶ I = (g, S) and |I| = |V (g) \ S|.
▶ After exhaustively applying RR1 and RR2, the resulting instance (g, S) satisfies

the condition that all vertices of V (g) \ S have at least two non-neighbors in g.
▶ Thus, there exists a sequence of vertices {b0, . . . , bk−1, bk} such that after adding

them to S, we can remove at least one vertex by RR1.
▶ The time complexity is O∗(γnk) where γk is the largest real root of

x|I| = x|I|−1 + · · ·+ x|I|−(k+1) + x|I|−(k+2), equivalent to xk+3 − 2xk+2 + 1 = 0.
8/13

Our Contribution: Improve the Practical Performance

▶ A coloring of a graph is assigning each vertex a color such that for every edge in
the graph, its two end-points have different colors.

v1

v7
v2

v5v8 v3

v4

v6

▶ Given an instance (g, S) and a coloring of V (g) \ S with c colors {1, . . . , c}, let
π1, π2, . . . , πc be the partitioning of V (g) \ S based on their colors.

– Each πi consists of all vertices with color i and thus is an independent set.
▶ The existing graph coloring-based upper bound is

|S|+∑c
i=1min

(⌊
1+

√
8k+1
2

⌋
, |πi|

)
– An independent set with > ⌊ 1+

√
8k+1
2 ⌋ vertices will induce > k missing edges

9/13

Our Contribution: Improve the Practical Performance

▶ Drawbacks of the existing upper bound |S|+∑c
i=1min

(⌊
1+

√
8k+1
2

⌋
, |πi|

)
– It considers π1, . . . , πc independently, includes much more vertices than necessary.

▶ Suppose |πi| ≥ ⌊ 1+
√

8k+1
2

⌋, ∀1 ≤ i ≤ c, then the upper bound is |S|+ c · ⌊ 1+
√
8k+1
2

⌋.
▶ But obviously |S|+ c+ k is a much smaller upper bound (e.g., when c is large)

– It does not consider the non-edges in S, and the non-edges between S and V (g) \ S.
▶ Our upper bound

– For each πi, sort its vertices into non-decreasing order regarding |NS(·)|, and define
the weight of the j-th vertex in the sorted order, denoted vij , to be

w(vij) = |NS(vij)|+ j − 1, where the index j starts from 1.
– Let v1, v2, . . . , be an ordering of V (g) \ S in non-decreasing order regarding their

weights w(·).
– The maximum k-defective clique in the instance (g, S) is of size at most |S| plus the

largest i such that |E(S)|+∑i
j=1 w(vj) ≤ k.

▶ We also propose two reductioin rules for practical performance. See our paper.

10/13

Performance Study

Real-world graphs Facebook graphs DIMACS10&SNAP
kDC KDBB MADEC+

p kDC KDBB MADEC+
p kDC KDBB MADEC+

p

k = 1 133 117 115 114 110 110 37 36 36
k = 3 130 107 94 114 110 104 37 35 31
k = 5 127 104 81 114 108 78 37 34 28
k = 10 119 85 36 111 109 9 36 30 15
k = 15 110 68 26 101 103 0 29 25 10
k = 20 104 56 20 88 80 0 27 22 6

Table: Number of solved instances by the algorithms kDC, KDBB and MADEC+
p with a time

limit of 3 hours (best performers are highlighted in bold)

▶ The real-world graphs collection contains 139 real-world graphs from the Network Data
Repository with up to 5.87× 107 vertices and 1.06× 108 undirected edges.

▶ The Facebook graphs collection contains 114 Facebook social networks from the
Network Data Repository with up to 5.92× 107 vertices and 9.25× 107 undirected edges.

▶ The DIMACS10&SNAP graphs collection contains 37 graphs with up to 1.04× 106

vertices and 6.89× 106 undirected edges.
11/13

Performance Study

0.04
kDC kDC/RR3&4 kDC/UB1 kDC-Degen KDBB

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

60

80

100

120

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(a) k = 10

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

60

80

100

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(b) k = 15

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

40

60

80

100

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(c) k = 20

Figure: Number of solved instances for real-world graphs (vary time limit)

▶ kDC/UB1 is kDC without our new upper bound.
▶ kDC/RR3&4 is kDC without our new practical reduction rules.
▶ kDC-Degen: kDC with the initial solution computed by Degen.

12/13

Conclusion

▶ We improved the time complexity of maximum k-defective clique computation
from O∗(γn2k) to O∗(γnk).

▶ We also significantly improved the practical performance.

▶ The source code is available at
https://lijunchang.github.io/Maximum-kDC/

▶ We recently futher improved the time complexity to O∗(γnk−1) in
3

3Lijun Chang. “Maximum Defective Clique Computation: Improved Time Complexities and Practical Performance”. In: CoRR abs/2403.07561
(2024). arXiv: 2403.07561.

13/13

https://lijunchang.github.io/Maximum-kDC/
https://arxiv.org/abs/2403.07561

	Introduction

