
1

Accelerating Graph Similarity Search via
Efficient GED Computation

Lijun Chang, Xing Feng, Kai Yao, Lu Qin, Wenjie Zhang

Abstract—Computing the graph edit distance (GED) between graphs is the core operation in graph similarity search. Recent studies
suggest that the existing index structures are ineffective in reducing the overall processing time of graph similarity search, and that
directly verifying the GED between the query graph and every data graph in the database is still the best option. The state-of-the-art
algorithm for GED verification is the recently proposed AStar-LSa. However, AStar-LSa may consume an extremely large amount of
main memory or even run out-of-memory, when the graphs become larger and/or the GED threshold becomes larger. In this paper, we
aim to improve the efficiency of GED verification and simultaneously lower the main memory consumption. To achieve that, we propose
a new estimation for the lower bounds of partial mappings between graphs. We formally prove that our new lower bound is tighter than
the one used in AStar-LSa. Moreover, we also propose efficient algorithms to compute the lower bounds, as well as optimization
techniques to improve the efficiency. Empirical studies on real datasets demonstrate that our newly proposed algorithm AStar-BMao
runs faster, and at the same time consumes much less main memory, than AStar-LSa.

Index Terms—graph similarity search, graph edit distance, branch match

✦

1 INTRODUCTION

R ETRIEVING all occurrences of a query graph in a graph
database is a fundamental problem in graph database

research. Here, the graph database contains a large quan-
tity (e.g., thousands or millions) of small to medium sized
graphs. Example graph databases include a database of
chemical compounds, a database of proteins, a database
of program call graphs, and etc.1 In many applications,
searching for the exact occurrences of a query graph may
return no result or very few results that are not sufficient
for the applications. This could be the result of erroneous
data entry, data noise, or even the nature of the applications.
An immediate remedy is to search for inexact occurrences,
i.e., retrieving all graphs in the database that are similar
to the query graph, which has been extensively studied
recently [1], [2], [3], [4], [5], [6], [7], [8], [9].

Query graph

Results

Graph database

and threshold

...

q

g1

g3D

τ

g2

g1

g3

Fig. 1: Graph similarity search

Given a graph database D that contains a collection of
small to medium sized data graphs, the problem of graph
similarity search takes a query graph q and a threshold τ

• L. Chang and K. Yao are with the School of Computer Science, University
of Sydney
E-mail: Lijun.Chang@sydney.edu.au

• X. Feng and L. Qin are with University of Technology Sydney
• W. Zhang is with University of New South Wales

1. http://www.fki.inf.unibe.ch/databases/iam-graph-database

as input, and outputs all data graphs in D that are similar
to q, e.g., see Figure 1. That is, results(q, τ) = {g ∈ D |
sim(q, g) ≥ τ} where sim(q, g) is the similarity between
q and g. Among various (dis-)similarity measures, graph
edit distance (GED) has been widely adopted by the existing
works (e.g., see [1], [2], [3], [4], [5], [6], [7], [8], [9]). This
is because GED has several nice properties, e.g., it is a
metric, it is applicable to all types of graphs, and it captures
the structural difference between graphs. Specifically, the
GED between graphs q and g, denoted ged(q, g), is the
minimum number of edit operations that are needed to
transform q into g, where the edit operations are edge inser-
tion/deletion/relabeling and vertex insertion/deletion/relabeling;
note that, a vertex can be deleted only when it has no
adjacent edges. GED gives the minimum amount of dis-
tortion needed to transform one graph into the other, and
ged(q, g) = ged(g, q). The result of (GED-based) graph
similarity search then is {g ∈ D | ged(q, g) ≤ τ}.

As GED computation is NP-hard [10], most of the ex-
isting works for graph similarity search adopt the filtering-
and-verification paradigm aiming to reduce the number of
GED verifications (i.e., verifying whether ged(q, g) ≤ τ) by
various offline constructed indexes, e.g., q-gram-based in-
dex [7], star structure-based index [6], and subgraph-based
index [5], [8]. That is, for a given query, the index is firstly
probed online to filter out unpromising data graphs. The
main focus of the existing studies is on designing different
index structures, based on the premise that GED verifica-
tion is extremely slow. Recently, an algorithm AStar-LSa is
proposed in [1], which significantly improves the efficiency
of GED verification compared to the algorithms used in
previous works. Moreover, it is observed in [1] that, when
AStar-LSa is adopted for GED verification, the existing
index structures have very limited effectiveness, e.g., the
improvement of using Pars [8] for filtering will be at most
52% than directly verifying all graphs of D by AStar-LSa.

http://www.fki.inf.unibe.ch/databases/iam-graph-database

In this paper, along the same line as [1], [3], [4], we
aim to further improve the efficiency of GED verification
and computation. Note that, besides graph similarity search,
GED verification/computation also has many other ap-
plications, e.g., in graph classification [11], graph cluster-
ing [12], biochemistry [13] and medicine [14]. The state-
of-the-art algorithm for GED verification/computation is
AStar-LSa [1]. It computes ged(q, g) by enumerating (ver-
tex) mappings from V (q) to V (g), where each mapping
f : V (q) → V (g) induces an editorial cost. The minimum
editorial cost among all full mappings from V (q) to V (g)
equals ged(q, g). As there is an exponential number of vertex
mappings, AStar-LSa prunes all full mappings that share the
same prefix (i.e., partial mapping) f if the lower bound cost
of f , denoted lbf , is larger than τ (which implies that all full
mappings that take f as a prefix have editorial costs larger
than τ). The efficiency of AStar-LSa mainly comes from
two aspects. Firstly, AStar-LSa designed the anchor-aware
label set-based lower bound lbLSa which is much tighter
than the label set-based lower bound lbLS used in previous
algorithms. Secondly, AStar-LSa proposed a novel algorithm
for computing the lower bound costs of all children of a
partial mapping in totally linear time.

We observe that the main memory consumption of
AStar-LSa increases very fast when either the graph size
or the threshold τ becomes larger. This limits AStar-LSa
from scaling to larger graphs or larger threshold values.
Moreover, the main memory consumption of AStar-LSa,
and more generally of the search paradigm AStar, is in-
versely related to the tightness of the lower bound esti-
mation; that is, the tighter (i.e., the larger the value of)
the lower bound estimation, the smaller the main mem-
ory consumption. Thus, we in this paper first propose an
anchor-aware branch match-based lower bound lbBMa. We
formally prove the correctness of lbBMa and that lbBMa is
tighter than lbLSa, i.e., lbBMaf ≥ lbLSaf holds for any mapping f .
We show that lbBMah for all children h of f can be computed
in O

(
(|V (q)|+ |V (g)|)4

)
total time. However, due to the

high time complexity of computing the lower bound costs
regarding lbBMa, the resulting algorithm AStar-BMa, despite
of having a much smaller search space, may run slower than
AStar-LSa. To strike a balance between the tightness and the
efficiency of lower bound estimation, we then slightly loose
the lower bound lbBMa into lbBMao such that the lower bound
costs of all children of f regarding lbBMao can be computed
in O

(
(|V (q)|+ |V (g)|)3

)
total time. We also formally prove

that lbBMao is still tighter than lbLSa. As a result, AStar-BMao
runs faster and scales better, due to having a much smaller
search space, than the state-of-the-art algorithm AStar-LSa.

Contributions. Our main contributions are as follows.

• We design an anchor-aware branch match-based
lower bound lbBMa, and an algorithm to compute the
lower bound cost for all children of a partial mapping
in O

(
(|V (q)|+ |V (g)|)4

)
total time.

• We slightly loose the lower bound lbBMa into lbBMao

such that we are able to propose an algorithm to
compute the lower bound cost for all children of a
partial mapping in O

(
(|V (q)|+ |V (g)|)3

)
total time.

• We formally prove that lbBMao is tighter than lbLSa.

We conduct extensive performance studies on both real
datasets and synthetic datasets. The results confirm that our
algorithm AStar-BMa that uses the lower bound lbBMa has the
smallest search space and thus smallest main memory con-
sumption. Nevertheless, our algorithm AStar-BMao that uses
the lower bound lbBMao runs faster, as it computes the lower
bounds much faster while only increasing the search space
slightly. When compared to the state-of-the-art algorithm
AStar-LSa, our algorithm AStar-BMao has a much smaller
main memory consumption and also runs faster for both
graph similarity search and GED verification/computation.

Organization. The rest of the paper is organized as fol-
lows. A brief overview of related works is given below.
Preliminaries are presented in Section 2. We present the
state-of-the-art approach AStar-LSa in Section 3. We design
a tighter lower bound lbBMa, in Section 4, which results in
our algorithm AStar-BMa. We propose to trade tightness
for efficiency by slightly loosing the tightness of lbBMa in
Section 5, which results in our algorithm AStar-BMao. We
report the results of our experimental studies in Section 6.
Finally, Section 7 concludes the paper.

Related Works. Related works are categorized as follows.
(1) Graph Similarity Search. GED-based graph similarity
search has been extensively studied, e.g., in [1], [3], [4], [5],
[6], [7], [8], [9]. Most of the existing works focus on de-
signing effective index structures — such as q-gram-based
index [7], star structure-based index [6], and subgraph-
based index [5], [8] — to filter out as many unpromising
data graphs (i.e., dissimilar to the query graph) as pos-
sible. Some recent works suggest index-free approaches
for graph similarity search, i.e., without pre-constructing
an index offline [1], [3], [4]. Among them, Inves [4] con-
ducts online graph partitioning-based filtering for GED
verification, while AStar-LSa [1] and CSI GED [3] directly
verify every data graph in the database with the query
graph. It is shown in [1] that the existing index structures
are ineffective in reducing the overall processing time of
graph similarity search, and that AStar-LSa outperforms
both Inves and CSI GED. In this paper, we follow the index-
free approach, and propose a better algorithm for GED
verification/computation.
(2) GED Computation. The notion of GED was proposed in
[15] to quantify the distance between two graphs. Zeng et
al. [10] proved that computing the exact GED is NP-hard.
Nevertheless, algorithms have been designed for computing
the exact GED in practice. A best-first search algorithm
A∗GED is developed in [16], [17], and depth-first search
algorithms DF GED [18], [19] and CSI GED [3] are shown
to outperform A∗GED. The recently proposed AStar-LSa [1]
is the state-of-the-art algorithm. In this paper, we propose
a new algorithm AStar-BMao which improves AStar-LSa
regarding both processing time and main memory usage.
(3) Maximum Common Subgraph. Measuring the similarity
between two graphs based on their maximum common
subgraph, which is NP-hard to compute [20], is also studied
in the literature. Mcgregor [20] proposed a depth-first search
method, while more advanced pruning techniques are later
proposed in [21], [22]. Another strategy is first constructing a
product graph of the two input graphs, and then computing
the maximum clique of the product graph [23], [24]. These

techniques cannot be applied to GED computation due to
the inherently different problem definition.
(4) Machine Learning Methods for GED Estimation. Recently,
machine learning methods have also been proposed for es-
timating the GED between two graphs [25], [26], [27]. How-
ever, all these methods are heuristic in nature without any
approximation guarantees, while we focus on exact com-
putation in this paper. Moreover, all of them, except [27],
simply predict the GED value without predicting an edit
path, while the edit path is often of the central interest
in many applications as pointed out in [27]. We show in
Section 6.3 that our AStar-BMao algorithm runs 4 orders
of magantinude faster than the algorithm of [27], not to
mention that AStar-BMao computes the optimal edit path
while [27] does not guarantee optimality.

2 PRELIMINARIES

In this paper, we focus on labeled and undirected simple
graphs2 g = (V (g), E(g), l), where V (g) is a vertex set, E(g)
is an edge set, and l : V (g)∪E(g) → Σ is a labelling function
that assigns each vertex and/or edge a label from the label
set Σ; that is, l(u) and l(u, u′) are the labels of vertex u
and edge (u, u′), respectively. We denote the number of
vertices and the number of edges of g by |V (g)| and |E(g)|,
respectively. Given a vertex subset S ⊆ V (g), the subgraph
of g induced by S is gS = (S, {(u, u′) ∈ E(g) | u, u′ ∈ S}, l).
For presentation simplicity, we simply refer to a labeled and
undirected graph as a graph.

The graph edit distance is defined based on graph edit
operations that transform graphs. Specifically, there are six
(graph) edit operations: inserting/deleting an isolated ver-
tex into/from the graph (vertex insertion and vertex dele-
tion), adding/deleting an edge between two vertices (edge
insertion and edge deletion), and changing the label of a ver-
tex/edge (vertex relabeling and edge relabeling). Vertex/edge
insertion also include the label of the vertex/edge.

Definition 2.1: The graph edit distance (GED) between two
graphs q and g, denoted ged(q, g), is the minimum number of
edit operations that can transform q into g. 3

v1

v2 v3

v4A

A A

B

b a a

(a) Graph q

u1

u2 u3

u4A

A A

B
a b a

(b) Graph g

Fig. 2: Sample graphs

Consider the two graphs q and g in Figure 2, where
vertex labels are illustrated inside circles (i.e., A,B) and edge
labels are illustrated beside edges (i.e., a, b). One possible
sequence of edit operations for transforming q into g is as
follows: (1) change the label of edge (v1, v2) from b to a,

2. All our techniques can straightforwardly handle directed graphs
3. We in this paper focus on uniform edit cost, i.e., all the edit

operations have the same cost. Note that, our techniques can be
easily extended to handle non-uniform edit cost, i.e., we only need to
revise Equation (5) to consider the non-uniform edit costs; a detailed
exposition is left as future work.

TABLE 1: Frequently used notations

Notation Description

q, g Two graphs
V (g), E(g) The vertex set and edge set of g

1ϕ The indicator function that equals 1 if the expression ϕ
evaluates to true and 0 otherwise

⊔, ⊓ Multi-set union and intersection
Υ(S1, S2) Edit distance between multi-sets S1 and S2, i.e.,

Υ(S1, S2) = max {|S1|, |S2|} − |S1 ⊓ S2|
ged(q, g) The GED between graphs q and g

T The search tree of all mappings from V (q) to V (g)
f , h (Partial) mapping from V (q) to V (g)
f(v) The vertex of V (g) to which v ∈ V (q) maps
edcf The editorial cost of a full mapping f
mcf The mapping cost of a (partial) mapping f
lbf Lower bound of the editorial costs of all full mappings

that extend f

qf The subgraph of q induced by vertices of f
qf̄ The remaining subgraph of q by removing qf

F(qf̄ , gf̄) The set of all full mappings from V (qf̄) to V (gf̄)
f ⊕ σ Concatenation of f and σ where σ ∈ F(qf̄ , gf̄)

l(v) Label of vertex u
l(v, v′) Label of edge (v, v′)
LV (qf̄) Multi-set of vertex labels of qf̄
LE(qf̄) Multi-set of edge labels of qf̄
LEI

(qf̄) Multi-set of labels of inner edges of qf̄
LE(v) Multi-set of labels of v’s adjacent edges

LEC
(v) Multi-set of labels of v’s cross adjacent edges

LEI
(v) Multi-set of labels of v’s inner adjacent edges

(2) delete edge (v1, v3), and (3) insert edge (v2, v4) with label
b. Thus, the GED between q and g is at most 3. Nevertheless,
computing the exact GED is an NP-hard problem [10].

Problem Statement. Given two graphs, q and g, and a
threshold τ , we study the problem of GED verification that
outputs true if ged(q, g) ≤ τ and false otherwise.

As demonstrated in the Introduction, GED verification
is a critical and fundamental operation in graph similarity
search. Our techniques can also be applied to the problem of
GED computation that computes the exact value of ged(q, g).

As ged(q, g) = ged(g, q) [15], we can assume that
|V (q)| ≤ |V (g)|; otherwise, we can simply swap q and
g. For presentation simplicity, we further assume that
|V (q)| = |V (g)| when discussing our techniques in the
remainder of the paper, since we can add |V (g)| − |V (q)|
dummy vertices to q [1] if |V (q)| < |V (g)|. Note that,
|V (q)| ≠ |V (g)| in all our experimental studies.

In the following, we use v and its variants, v′, v1, v2, . . .,
to denote vertices in q, and use u, u′, u1, u2, . . . for vertices
in g. Frequently used notations are summarized in Table 1.

3 STATE-OF-THE-ART APPROACH AStar-LSa
The state-of-the-art approach AStar-LSa [1] computes
ged(q, g) by enumerating vertex mappings from V (q) to
V (g); that is, vertex deletion is not needed. For presen-
tation simplicity, we refer to a vertex mapping simply as
a mapping. Each mapping f : V (q) → V (g) induces an
editorial cost, denoted edcf (q, g), which is the number of
edit operations required to transform q into g by obeying the
mapping (i.e., v ∈ V (q) maps to f(v) ∈ V (g)). The editorial
cost of a mapping can be computed in time linear to the size

· · · · · · · · ·u4 f14 u3 u4 u2 u3 u2

u3
f8

u4
f9

u2
f10

u4
f11

u2
f12

u3
f13

u2f5 u3f6 u4f7

u1f1 u2f2 u3f3 u4f4

root, ∅f0level

1

2

3

4

π

v1

v2

v3

v4

Fig. 3: Search tree T

of q and g [1]. For example, the editorial cost of the mapping
f = {v1 7→ u1, v2 7→ u2, v3 7→ u3, v4 7→ u4} for the graphs
in Figure 2 is 3: change the label of edge (v1, v2) from b to a,
delete edge (v1, v3), and insert edge (v2, v4) with label b.

The GED between q and g then equals the minimum
editorial cost among all mappings from V (q) to V (g) [1],
and moreover the optimal edit path (i.e., the shortest se-
quence of edit operations) can be obtained from the optimal
mapping (i.e., having the minimum editorial cost) in linear
time. For example, Figure 3 presents all the mappings from
V (q) to V (g) in a prefix-shared manner for the matching
order π = (v1, . . . , v|V (q)|) of V (q). This results in a search
tree T . Specifically, each node of T at level i represents a
(partial) mapping from (v1, . . . , vi) to V (g), which extends
that of its parent at level i − 1 by additionally mapping vi
to a vertex of V (g). For example, node f5 represents the
partial mapping {v1 7→ u1, v2 7→ u2}, and node f8 extends
its parent f5 by additionally mapping v3 to u3.

However, there is an exponential (factorial to be exact)
number of mappings in the search tree T , as computing
the exact GED is NP-hard [10]. For example, there are
4! = 24 mappings in total for the graphs in Figure 2. For
efficient GED verification/computation, the state-of-the-art
approach AStar-LSa [1] conducts a pruned best-first search
on the search tree T , by exploiting lower bounds of partial
mappings for prioritizing as well as for pruning.

Definition 3.1: Each (partial) mapping f has a mapping
cost, denoted mcf (q, g) and abbreviated as mcf , which equals
edcf (qf , gf); here, qf and gf , respectively, are the subgraphs of
q and g induced by vertices in f .

Definition 3.2: The lower bound cost of a (partial) mapping f
from V (q) to V (g), denoted lbf (q, g) and abbreviated as lbf , is
a value that is at least the mapping cost mcf of f and at most the
minimum editorial cost among all full mappings that extend f .

The framework of the AStar search paradigm, which is
used by AStar-LSa, for GED verification is shown in Al-
gorithm 1. A priority queue Q is used to store the search
frontier which is initialized by the root of the search tree T
(Line 2). Each entry of Q consists of a partial mapping f , its
level i and its parent pa in T , and its lower bound lbf . The
algorithm iteratively pops from Q the top entry (f, i, pa, lbf)
(i.e., with the minimum lbf) (Line 4), and extends it by
computing the lower bound lbh for every child h of f
(Line 5). If there is a child h that is a full mapping (i.e.,
|h| = |V (q)|) and has lower bound at most τ , then the
algorithm returns true (Line 7). Otherwise, all such children
with lower bounds at most τ are pushed into Q (Line 8).
Note that for space consideration, each partial mapping f

Algorithm 1: [1] AStar(q, g, τ)
Output: true if ged(q, g) ≤ τ , and false otherwise

1 Compute a matching order π = (v1, . . . , v|V (q)|) of V (q);
2 Q← {(∅, 0, nil, 0)}; /* Push the root of the

search tree into the priority queue Q */;
3 while Q ̸= ∅ do
4 (f, i, pa, lbf)← pop the top entry from Q;

/* Lines 5-8 extend f by mapping vi+1 */
5 Compute the lower bound lbh for each child h of f ;
6 for each child h of f s.t. lbh ≤ τ do
7 if i+ 1 = |V (q)| then return true;
8 else Push (h, i+ 1, f, lbh) into Q;

9 return false;

is not stored in its entirety in Q, but only stores the vertex
u ∈ V (g) to which vi maps in f where i = |f |; the mapping
of other vertices vj for j < i can be obtained from its parent
pa, its parent’s parent, and so on. AStar-LSa [1] uses a
frequency-aware matching order at Line 1, based on two
intuitions: (1) a connected matching order is preferred, and
(2) infrequent part of a graph should be mapped first.

Lower Bound Estimation. To compute the lower bound
of a mapping f , q is decomposed into two parts: qf —
the subgraph of q induced by vertices in f , and qf̄ — the
remaining subgraph of q. Note that qf̄ contains none of the
vertices of qf but includes edges that have one end-point in
qf . That is, qf̄ contains both inner edges whose both end-
points are in qf̄ , and cross edges between vertices of qf̄ and
vertices of qf . Similarly, g is decomposed into gf and gf̄ .

qf gf

C

B

A

A

A

A

D

E

v3

v4

v5

u1

u2

u4

u5

v1

v2 u3

b

a

a

a a

a

a

a

Graph q Graph g
A

A

Fig. 4: Lower bound estimation

Example 3.1: Consider the mapping f = {v1 7→ u1, v2 7→ u2}
for the graphs q and g in Figure 4. qf and gf are the parts in
the shadowed rectangle, while qf̄ and gf̄ are the remaining parts;
specifically, qf̄ consists of three vertices {v3, v4, v5}, one inner
edge {(v3, v4)} and two cross edges {(v5, v1), (v3, v2)}. 2

Let LV (qf̄) and LV (gf̄) be the multi-sets of vertex labels
of qf̄ and gf̄ , respectively. Let LEI

(qf̄) and LEI
(gf̄) be the

multi-sets of labels of inner edges of qf̄ and gf̄ , respectively.
Let LEC

(v) be the multi-set of labels of v’s cross adjacent
edges. AStar-LSa uses the anchor-aware label set-based
lower bound lbLSa, which exploits the information of the
mapped vertices of qf , called anchored vertices.

Definition 3.3: [1] The anchor-aware label set-based lower
bound of a mapping f is

lbLSaf :=mcf + LSaf (qf̄ , gf̄) (1)

LSaf (qf̄ , gf̄) :=Υ
(
LV (qf̄), LV (gf̄)

)
+Υ

(
LEI

(qf̄), LEI
(gf̄)

)
+

∑
v∈V (qf)

Υ
(
LEC

(v), LEC
(f(v))

)
(2)

Here Υ(·, ·) denotes the edit distance between two multi-sets and
Υ(S1, S2) = max

{
|S1|, |S2|

}
− |S1 ⊓ S2|.

Example 3.2: For the partial mapping f in Example 3.1, we
have LV (qf̄) = {A,B,C}, LV (gf̄) = {A,A,E}, LEI

(qf̄) =
{a}, LEI

(gf̄) = {a, a}, LEC
(v1) = {b}, LEC

(v2) = {a},
LEC

(u1) = ∅, and LEC
(u2) = {a}. Thus, LSaf (qf̄ , gf̄) =

2 + 1 + 1 = 4, and lbLSaf = 5. 2

Let T LSa
≤x be the set of non-leaf nodes/partial

mappings in T whose lower bounds regarding
lbLSa are no larger than x, and |T LSa

≤x | be its
cardinality. The time complexity of AStar-LSa is
O

(
min

{
|T LSa

≤τ |, |T LSa
≤ged(q,g)|

}
× (|E(q)|+ |E(g)|)

)
, the

space complexity is O
(
min

{
|T LSa

≤τ |, |V (g)| · |T LSa
≤ged(q,g)|

})
[1].

Algorithm 1 can be modified to compute the exact
ged(q, g), by setting τ = ∞, removing Line 7, and termi-
nating the algorithm if f popped at Line 4 is a full mapping,
where the lower bound of this f then equals ged(q, g). The
above time complexity and space complexity still hold.

Algorithm 1 is also correct for the case |V (q)| < |V (g)|
as long as the lower bound lbf of a mapping f that maps all
vertices of q satisfies lbf = mcf + |V (gf̄)|+ |E(gf̄)|, i.e., the
lower bound is equal to the editorial cost edcf (q, g) when f
maps all vertices of q. Note that, lbLSaf as well as the lower
bounds we propose in this paper satisfy this property.

4 A TIGHTER LOWER BOUND ESTIMATION

It is shown in [1] that AStar-LSa significantly outperforms
the previous algorithms, and the efficiency of AStar-LSa
mainly comes from two innovations. Firstly, the anchor-
aware label set-based lower bound lbLSa used in AStar-LSa
is tighter than the label set-based lower bound lbLS used
in previous algorithms. Secondly, AStar-LSa proposes an
efficient algorithm for computing the lower bound costs
of all children of a partial mapping in totally linear time.
Nevertheless, we observe in our experiments that the main
memory consumption of AStar-LSa increases very fast when
either the graph size or the threshold τ becomes larger.
This limits AStar-LSa from scaling to larger graphs or larger
threshold values. As the main memory consumption of
the AStar search paradigm (i.e., Algorithm 1) is inversely
related to the tightness of the lower bound estimation, in this
section we propose an anchor-aware branch match-based
lower bound lbBMa for computing a tighter lower bound
than lbLSa. We present the lower bound lbBMa in Section 4.1,
discuss its computation in Section 4.2, and finally compare
it with lbLSa in Section 4.3.

4.1 Anchor-Aware Branch Match-based Lower Bound
lbBMa

Before presenting the lower bound lbBMa, we first describe
a simpler but looser lower bound, called the branch match-
based lower bound lbBM, to illustrate the main ideas. The
lower bound is based on the concept of branch. The branch
structure of a vertex v is B(v) = (l(v), LE(v)), where LE(v)
is the multi-set of labels of v’s adjacent edges. For example,
for the graph q in Figure 4, B(v3) = (A, {a, a}). Based on

the branch structure B(v) of v ∈ qf̄ and the branch structure
B(u) of u ∈ gf̄ , the cost of mapping v to u is defined as

λBM(v, u) := 1l(v)̸=l(u) +
1
2 ×Υ

(
LE(v), LE(u)

)
,

where 1ϕ is an indicator function that equals 1 if the
expression ϕ evaluates true and 0 otherwise. Note that,
Υ(·, ·) is multiplied by a coefficient 1

2 ; this is because each
edge (v, v′) ∈ E(qf̄) is considered twice: once in B(v) and
once in B(v′). Then, the branch match-based lower bound
of a mapping f , denoted lbBMf , is defined as mcf plus the
minimum cost of mapping the set of branch structures of qf̄
to the set of branch structures of gf̄ , i.e.,

lbBMf :=mcf + BMf (qf̄ , gf̄) (3)

BMf (qf̄ , gf̄) :=minσ∈F(qf̄ ,gf̄)

∑
v∈V (qf̄)

λBM(v, σ(v)) (4)

where F(qf̄ , gf̄) denotes the set of all full mappings from
vertices of qf̄ to vertices of gf̄ , and σ(v) is the vertex of
V (gf̄) to which v maps by σ.

Example 4.1: For the partial mapping f in Example 3.1,
B(v3) = (A, {a, a}) and B(u4) = (A, {a, a}); thus,
λBM(v3, u4) = 0. It can be verified that BMf (qf̄ , gf̄) = 3 and
lbBMf = 4. 2

Note that, the branch match technique has been used
in [9] for computing a global lower bound of ged(q, g), i.e.,
the lower bound of f when f = ∅. The correctness of lbBMf
can be proved in a similar way to the proofs in [9]; we
omit the details. However, it is worth pointing out that
the branch match technique has not been utilized in the
literature for computing lower bounds for partial mappings
as we do in this paper, and thus has not been utilized for
GED verification/computation. Moreover, the anchor-aware
branch match-based lower bound presented next is new.

Anchor-Aware Branch Match-based Lower Bound lbBMa. By
comparing the lower bound computed in Example 4.1 with
that in Example 3.2, we see that lbBMf < lbLSaf for this f ; note
that, for lower bound estimation, the larger the better. Thus,
lbBM is not tighter than lbLSa; this is also demonstrated by
our experiments in Section 6.2. The main reason is that lbBM

completely ignored the information of the anchored vertices
(i.e., mapped vertices). Motivated by this, we propose an
anchor-aware branch match-based lower bound lbBMa which
improves lbBM. We first revise the definition of branch struc-
ture by also encoding the information of anchored vertices.

Definition 4.1: Our revised branch structure of a ver-
tex v ∈ V (qf̄) regarding f is B′

f (v) =
(
l(v), LEI

(v),⋃
v′∈V (qf)

{
(f(v′), l(v, v′))

})
, where LEI

(v) denotes the multi-
set of labels of v’s inner adjacent edges, and l(v, v′) = ⊥ if there
is no edge between v and v′.

That is, we explicitly encode each anchored vertex v′

and its connection l(v, v′) to v in the revised branch struc-
ture. For example, for the graph q in Figure 4, B′

f (v3) =
(A, {a}, {(u1,⊥), (u2, a)}). The revised branch structures
for vertices of gf̄ are defined similarly.

Given B′
f (v) and B′

f (u) for v ∈ V (qf̄) and u ∈ V (gf̄),
the cost of mapping v to u regarding the anchored vertices

in f is defined as the sum of the edit distances between the
three corresponding components of B′

f (v) and B′
f (u), i.e.,

λBMaf (v, u) :=1l(v)̸=l(u) +
1
2 ×Υ

(
LEI

(v), LEI
(u)

)
+

∑
v′∈V (qf)

1l(v,v′)̸=l(u,f(v′)) (5)

where the label of a non-existence edge is defined as ⊥.
Intuitively, λBMaf (v, u) equals the minimum cost to edit v ∈
V (qf̄) and its adjacent edges to be the same as u ∈ V (gf̄)
and u’s adjacent edges, subject to the constraint that the edge
connecting v to an anchored vertex v′ ∈ V (qf) must map to the
edge (u, f(v′)) and vice versa.

Definition 4.2: The anchor-aware branch match-based lower
bound of a partial mapping f is defined as

lbBMaf :=mcf + BMaf (qf̄ , gf̄) (6)

BMaf (qf̄ , gf̄) :=minσ∈F(qf̄ ,gf̄)

∑
v∈V (qf̄)

λBMaf (v, σ(v)) (7)

Lemma 4.1: For any (partial) mapping f from V (q) to V (g),
lbBMaf is a lower bound cost of f .

Proof: It is easy to verify that for each σ ∈ F(qf̄ , gf̄), the
concatenation of f and σ, denoted f ⊕ σ, is a full mapping
from V (q) to V (g). Thus, it suffices to prove that for every
σ ∈ F(qf̄ , gf̄), the following inequality holds:

mcf +
∑

v∈V (qf̄)
λBMaf (v, σ(v)) ≤ edcf⊕σ (8)

This is because lbBMaf minimizes the left hand side of the
inequality among all σ ∈ F(qf̄ , gf̄).

Let’s consider a specific σ ∈ F(qf̄ , gf̄). Note that

edcf⊕σ =mcf +
∑

v∈V (qf̄)

∑
v′∈V (qf)

1l(v,v′)̸=l(σ(v),f(v′))

+
∑

v∈V (qf̄)
1l(v)̸=l(σ(v))

+ 1
2

∑
v∈V (qf̄)

∑
v′∈V (qf̄)\{v} 1l(v,v′)̸=l(σ(v),σ(v′))

where the first term accounts for the editorial cost of f
mapping V (qf) to V (gf), the second term accounts for the
editorial cost for mapping the cross edges between V (qf)
and V (qf̄) to the cross edges between V (gf) and V (gf̄),
and the sum of the last two terms accounts for the editorial
cost of σ mapping V (qf̄) to V (gf̄).

By plugging in the equation of λBMaf (v, σ(v)) into Inequal-
ity (8), the left hand side of Inequality (8) becomes

mcf +
∑

v∈V (qf̄)

∑
v′∈V (qf)

1l(v,v′)̸=l(σ(v),f(v′))

+
∑

v∈V (qf̄)
1l(v)̸=l(σ(v)) +

1
2

∑
v∈V (qf̄)

Υ
(
LEI

(v), LEI
(σ(v))

)
Thus, it suffices to prove that for every v ∈ V (qf̄), the
following inequality holds

Υ
(
LEI

(v), LEI
(σ(v))

)
≤ ∑

v′∈V (qf̄)\{v} 1l(v,v′)̸=l(σ(v),σ(v′)).

As LEI
(v) = {l(v, v′) | v′ ∈ V (qf̄) \ {v}, (v, v′) ∈

E(q)}, and LEI
(σ(v)) = {l(σ(v), σ(v′)) | v′ ∈ V (qf̄) \

{v}, (σ(v), σ(v′)) ∈ E(g)}, the last inequality holds. Thus,
the lemma follows. 2

v3

v4

v5

u3

u4

u5

u2

⋆

⋆

u1

u2

⋆

⋆

⋆

⋆

a
a

a

b

a
a

a
a

a

0
1.5

2

2
1.5

1

3.5

3
2.5

Fig. 5: Anchor-aware branch match-based lower bound

Example 4.2: For the partial mapping f in Example 3.1, the
revised branch structures are shown in the dotted rectangles in
Figure 5, where non-existence edges (i.e., with label ⊥) are omit-
ted. Note that, here, we use ⋆ to denote a free vertex which can map
to any free vertex, and thus LEI

(v) is represented as {(⋆, α) |
α ∈ LEI

(v)}. The cost between two vertices are illustrated, in
the middle, on the solid edge connecting the vertices. In particular,
B′

f (v3) =
(
A, {a}, {(u2, a)}

)
and B′

f (u4) =
(
A, {a, a}, {}

)
after omitting non-existence edges; thus, λBMaf (v3, u4) = 1.5. It
can be verified that BMaf (qf̄ , gf̄) = 4 and lbBMaf = 5. 2

By comparing Example 4.2 with Example 4.1, we see
that lbBMaf > lbBMf for this f . More generally, it can be easily
verified that λBMaf (v, u) ≥ λBM(v, u) for every v ∈ V (qf̄)

and u ∈ V (gf̄). Consequently, lbBMaf ≥ lbBMf holds for every
mapping f . That is, lbBMa is tighter than lbBM.

4.2 Computing Lower Bound Cost lbBMaf

To compute lbBMaf , we need to find the mapping σ ∈
F(qf̄ , gf̄) that has the lowest cost (see Equation (7)). This
is exactly the minimum cost perfect matching problem, and
can be solved by the classic Hungarian algorithm [28].

Recall that, Algorithm 1 needs to compute the lower
bound cost for all children of a partial mapping f (see
Line 5). We conduct this for our lower bound lbBMa by
computing the lower bound cost for each child h of f in-
dependently. The pseudocode is shown in Algorithm 2. We
first obtain the mapping h from f by additionally mapping
vi+1 to a vertex u′ of V (gf̄), where i = |f | (Line 2). Then,
we construct an edge-weighted complete bipartite graph
consisting of vertices of qh̄ on one side and vertices of
gh̄ on the other side (Lines 3–5), where the cost of edge
(v, u) in the bipartite graph is computed as λBMah (v, u). For
example, Figure 5 shows the bipartite graph of the mapping
h = {v1 7→ u1, v2 7→ u2} for the graphs in Figure 4.
Finally, we compute a minimum cost perfect matching σ∗

in the edge-weighted bipartite graph by the Hungarian
algorithm (Line 6), and calculate the lower bound cost as
lbBMah = mch +

∑
v∈qh̄

λBMah (v, σ∗(v)) (Line 7).

Lemma 4.2: Algorithm 2 correctly computes the lower bound for
all children of f in O

(
(|V (q)|+ |V (g)|)4

)
total time.

Proof: The correctness directly follows from the above
discussions. Regarding the time complexity, firstly Line 6
takes O

(
(|V (q)|+ |V (g)|)3

)
time [28]. Secondly, Lines 2–

5 can also be conducted in O
(
(|V (q)|+ |V (g)|)3

)
time.

Thirdly, Line 7 take O(|E(q)| + |E(g)|) time. Finally, the

Algorithm 2: Compute lower bound for all f ’s
children regarding lbBMa

Input: Graphs q and g, and a partial mapping f
Output: Lower bound lbBMah for every child h of f

1 for each vertex u′ ∈ V (gf̄) do
2 h← f ⊕ {vi+1 7→ u′};
3 for each vertex v ∈ qh̄ do
4 for each vertex u ∈ gh̄ do
5 λBMa

h (v, u)← the cost of mapping v to u
regarding h;

6 σ∗ ← the minimum cost perfect matching between
V (qh̄) and V (gh̄) based on costs λBMa

h (v, u);
7 lbBMah ← mch +

∑
v∈qh̄

λBMa
h (v, σ∗(v));

time complexity of Algorithm 2 follows from the fact that
Lines 2–7 are run for |V (gf̄)| times. 2

4.3 Comparing lbBMa with lbLSa

By replacing the lower bound lb in Algorithm 1 with lbBMa,
we obtain our algorithm AStar-BMa. Let T BMa

≤x be the set of
non-leaf nodes/partial mappings in T whose lower bounds
regarding lbBMa are no larger than x. Then, the time and
space complexities of AStar-BMa, as shown in the theorem
below, directly follow that of AStar-LSa and Lemma 4.2.

Theorem 4.1: The time complexity of AStar-BMa is
O

(
min

{
|T BMa

≤τ |, |T BMa
≤ged(q,g)|

}
× (|V (q)|+ |V (g)|)4

)
. The

space complexity is O
(
min

{
|T BMa

≤τ |, |V (g)| · |T BMa
≤ged(q,g)|

})
.

As we will prove shortly in Lemma 4.3 that lbBMaf ≥ lbLSaf

holds for any mapping f , we have T BMa
≤x ⊆ T LSa

≤x for any
x. Thus, AStar-BMa has a smaller space complexity than
AStar-LSa. However, regarding time complexity, there is
no clear winner between the two algorithms, as AStar-BMa
computes a tighter lower bound in a higher time complexity.

Lemma 4.3: For any mapping f , we have lbBMaf ≥ lbLSaf .

Proof: By comparing Equation (7) with Equation (2), we
see that it suffices to prove that for every mapping σ ∈
F(qf̄ , gf̄), the following holds:∑

v∈V (qf̄)
λBMaf (v, σ(v))

≥Υ
(
LV (qf̄), LV (gf̄)

)
+Υ

(
LEI

(qf̄), LEI
(gf̄)

)
+

∑
v′∈V (qf)

Υ
(
LEC

(v′), LEC
(f(v′))

)
(9)

where BMaf (qf̄ , gf̄) equals the minimum of the left hand
side among all σ ∈ F(qf̄ , gf̄), and the right hand side of the
inequality is LSaf (qf̄ , gf̄). Recall that∑

v∈V (qf̄)
λBMaf (v, σ(v))

=
∑

v∈V (qf̄)
1l(v)̸=l(σ(v)) +

1
2

∑
v∈V (qf̄)

Υ
(
LEI

(v), LEI
(σ(v))

)
+

∑
v∈V (qf̄)

∑
v′∈V (qf)

1l(v,v′) ̸=l(σ(v),f(v′)) (10)

We compare the three components of the right hand side of
Inequality (9) with that of Equation (10) one-by-one. First,
as

⊔
v∈V (qf̄)

{
l(v)

}
= LV (qf̄) and

⊔
v∈V (qf̄)

{
l(σ(v))

}
=

LV (gf̄), thus∑
v∈V (qf̄)

1l(v) ̸=l(σ(v)) ≥ Υ(LV (qf̄), LV (gf̄))

Second, as
⊔

v∈V (qf̄)
LEI

(v) = LEI
(qf̄) ⊔ LEI

(qf̄) and⊔
v∈V (qf̄)

LEI
(σ(v)) = LEI

(gf̄) ⊔ LEI
(gf̄), we have

1
2

∑
v∈V (qf̄)

Υ
(
LEI

(v), LEI
(σ(v))

)
≥ Υ

(
LEI

(qf̄), LEI
(gf̄)

)
Third, as

∑
v∈V (qf̄)

1l(v,v′) ̸=l(σ(v),f(v′)) ≥
Υ
(
LEC

(v′), LEC
(f(v′))

)
holds for every vertex v′ ∈ V (qf),

we have ∑
v∈V (qf̄)

∑
v′∈V (qf)

1l(v,v′)̸=l(σ(v),f(v′))

≥∑
v′∈V (qf)

Υ
(
LEC

(v′), LEC
(f(v′))

)
Thus, the lemma holds. 2

Another advantage of the lower bound lbBMa is that for a
partial mapping f , if the vertices of qf̄ form an independent
set (i.e., have no inner edges), then lbBMaf equals (rather than
lower bounds) the minimum editorial cost among all full
mappings that extend f , as proved in the lemma below.
Thus, in such cases, we do not need to expand the partial
mapping f to full mappings, and we can stop early.

Lemma 4.4: For a partial mapping f , if the vertices of qf̄ form
an independent set, then lbBMaf equals the minimum editorial cost
among all full mappings that extend f .

Proof: We prove the lemma by showing that, if the ver-
tices of qf̄ form an independent set, then for every map-
ping σ ∈ F(qf̄ , gf̄), we have edcf⊕σ(q, g) = mcf +∑

v∈V (qf̄)
λBMaf (v, σ(v)). Firstly, let’s assume that the ver-

tices of gf̄ also form an independent set. It is easy to
verify that edcf⊕σ(q, g) = mcf +

∑
v∈V (qf̄)

λBMaf (v, σ(v)).
Secondly, if the vertices of gf̄ do not form an independent
set, then edcf⊕σ(q, g) equals the number of inner edges of
gf̄ plus edcf⊕σ(q, g

′) where g′ is the resulting graph of g
by removing all inner edges of gf̄ ; that is, edcf⊕σ(q, g) =
mcf +

∑
v∈V (qf̄)

λBMaf (v, σ(v)), by noting that LEI
(qf̄) = ∅

and
⊔

u∈V (gf̄)
LEI

(u) = LEI
(gf̄)⊔LEI

(gf̄). Thus the lemma
holds. 2

5 TRADING TIGHTNESS FOR EFFICIENCY

We observe in our experimental studies (see Section 6)
that AStar-BMa computes a much tighter lower bound and
thus has a much smaller search space and main memory
consumption than AStar-LSa. However, AStar-BMa may run
slower than AStar-LSa. This is mainly due to the high
time complexity of Algorithm 2 for computing the lower
bounds lbBMa. In this section, we trade the tightness of lbBMa

for a more efficient lower bound computation which will
result in an improved overall performance. We present our
optimized lower bound lbBMao in Section 5.1, discuss the
time and space complexity of AStar-BMao in Section 5.2, and
finally propose some optimizations in Section 5.3.

5.1 Optimized Anchor-Aware Branch Match-based
Lower Bound lbBMao

For a more efficient lower bound computation, we treat the
last mapped vertex of a partial mapping as a non-anchored
vertex instead of an anchored vertex. Specifically, let h =
f ⊕ {vi+1 7→ u} be a child of f , we treat vi+1 as a non-
anchored vertex when computing the lower bound of h.

Definition 5.1: The optimized anchor-aware branch match-
based lower bound of a partial mapping f ⊕ {vi+1 7→ u} is
defined as

lbBMaof⊕{vi+1 7→u} := mcf + BMa
vi+1 7→u
f (qf̄ , gf̄) (11)

where BMavi+1 7→u
f (qf̄ , gf̄) is similar to BMaf (qf̄ , gf̄) except that

vi+1 is restricted to map to u. More specifically,

BMa
vi+1 7→u
f (qf̄ , gf̄)

:=minσ∈F(qf̄ ,gf̄):σ(vi+1)=u

∑
v∈V (qf̄)

λBMaf (v, σ(v)) (12)

Following from the proof of Lemma 4.1, it is easy to see
that lbBMaof⊕{vi+1 7→u} is a lower bound of f ⊕ {vi+1 7→ u}. The
main advantage of treating vi+1 as a non-anchored vertex in
computing lbBMaof⊕{vi+1 7→u} is that the branch structures of ver-
tices of qf̄ and gf̄ as defined in Definition 4.1 are the same for
different u. As a result, we can share computation between
computing lbBMaof⊕{vi+1 7→u} and computing lbBMaof⊕{vi+1 7→u′}.

Algorithm 3: Compute lower bound for all f ’s
children regarding lbBMao

Input: Graphs q and g, and a partial mapping f
Output: Lower bound lbBMaoh for every child h of f

1 for each vertex v ∈ qf̄ do
2 for each vertex u ∈ gf̄ do
3 Compute the cost λBMa

f (v, u) of mapping v to u
regarding f ;

4 for each j ← 1 to |V (gf̄)| do
5 σ∗ ← the minimum cost perfect matching between

V (qf̄) and V (gf̄) based on costs λBMa
f (v, u);

6 u← the vertex to which vi+1 maps in σ∗;
7 h← f ⊕ {vi+1 7→ u)};
8 lbBMaoh ← mcf +

∑
v∈qf̄

λBMa
f (v, σ∗(v));

9 λBMa
f (vi+1, u)← +∞;

A naive algorithm that uses the same strategy as Algo-
rithm 2 (i.e., compute the lower bound for each child h of f
independently) would still have the same time complexity
as that of Algorithm 2. To efficiently compute the lower
bound cost for all children of f regarding lbBMao, we use
a different strategy as shown in Algorithm 3. We first con-
struct the edge-weighted complete bipartite graph between
V (qf̄) and V (gf̄) (Lines 1–3); note that, vi+1 is included
into the bipartite graph. Then, instead of first fixing h and
then computing the lower bound cost of h, we first compute
minimum cost perfect matching σ∗ in the current bipartite
graph (Line 5) and then assign the cost as a lower bound of
f ⊕ {vi+1 7→ σ∗(vi+1)} (Lines 6–8). In order to compute the
lower bound cost for other children of f , we set the weight
of the edge (vi+1, σ

∗(vi+1)) in the bipartite graph as +∞
(Line 9), i.e., we remove this edge from the bipartite graph.

Lemma 5.1: Algorithm 3 correctly computes the lower bound
for all children of a partial mapping f regarding lbBMao in
O

(
(|V (q)|+ |V (g)|)3

)
total time.

Proof: Firstly, it is easy to see that each vertex of gf̄ will
be selected at Line 6 exactly once. Thus, Line 7 enumerates
all children of f . Secondly, we prove that Line 8 computes
the lower bound for child h of f by contradiction. Suppose

that lbBMaoh computed at Line 8 is not the lower bound of
h as defined by Definition 5.1; that is, there is another
mapping σ from V (qf̄) to V (gf̄) such that σ(vi+1) = u
and

∑
v∈qf̄

λBMaf (v, σ(v)) <
∑

v∈qf̄
λBMaf (v, σ∗(v)). This con-

tradicts that σ∗ is a minimum cost perfect matching as
computed at Line 5. Thus, Algorithm 3 correctly computes
the lower bound for all children of f regarding lbBMao.

For the time complexity, Lines 1–3 can be conducted
in O

(
(|V (q)|+ |V (g)|)3

)
time. Lines 6–9 take O(|E(q)| +

|E(g)|) time. The most time-critical part is Line 5. Note that,
the first invocation of Line 5 takes O

(
(|V (q)|+ |V (g)|)3

)
time [28], and then each of the subsequent invocations can
be conducted in O

(
(|V (q)|+ |V (g)|)2

)
time [29]. Thus,

Algorithm 3 runs in O
(
(|V (q)|+ |V (g)|)3

)
total time. 2

The improved time complexity of lbBMao comes from the
fact that the lower bound computations of different children
of f are shared, such that each subsequent minimum cost
perfect matching can be obtained in O

(
(|V (q)|+ |V (g)|)2

)
time. It is worth mentioning that the time complexity of
lower bound computation regarding lbBMa cannot be im-
proved in a similar way. This is because the branch struc-
tures for different children are different, and thus the edge
weights in the bipartite graph constructed for one child h
may be completely different from that for another child h′.

5.2 Time and Space Complexity of AStar-BMao

By replacing the lower bound lb in Algorithm 1 with lbBMao,
we have the algorithm AStar-BMao. Let T BMao

≤x be the set of
non-leaf nodes/partial mappings in T whose lower bounds
regarding lbBMao are no larger than x. The time and space
complexities of AStar-BMao, as shown in the theorem below,
directly follow from that of AStar-LSa and Lemma 5.1.

Theorem 5.1: The time complexity of AStar-BMao is
O

(
min

{
|T BMao

≤τ |, |T BMao
≤ged(q,g)|

}
× (|V (q)|+ |V (g)|)3

)
. The

space complexity is O
(
min

{
|T BMao

≤τ |, |V (g)| · |T BMao
≤ged(q,g)|

})
.

According to the definitions, we intuitively have
lbBMaof⊕{vi+1 7→u} ≤ lbBMaf⊕{vi+1 7→u}. Thus, AStar-BMao has a
larger space complexity than AStar-BMa. Nevertheless, we
prove through the following two lemmas that the gap is
small.

Lemma 5.2: For every child h of a partial mapping f in the search
tree T , it satisfies lbBMaoh ≥ lbBMaf .

Proof: Let h be f ⊕ {vi+1 7→ u}. Recall that lbBMaf = mcf +

BMaf (qf̄ , gf̄) and lbBMaof⊕{vi+1 7→u} = mcf + BMa
vi+1 7→u
f (qf̄ , gf̄),

where BMa
vi+1 7→u
f (qf̄ , gf̄) is similar to BMaf (qf̄ , gf̄) except

that vi+1 is restricted to map to u, i.e.,

BMaf (qf̄ , gf̄) = minu′∈gf̄ BMa
vi+1 7→u′

f (qf̄ , gf̄)

Consequently, we have lbBMaf ≤ lbBMaof⊕{vi+1 7→u} = lbBMaoh . Note
that lbBMaf ≥ lbLSaf has been proved in Lemma 4.3. 2

Lemma 5.3: |T BMao
≤x | ≤ |V (g)| × |T BMa

≤x | holds for every x.

Proof: From Lemma 5.2, we know that lbBMaoh ≥ lbBMaf holds
for every child h of f in the search tree T . As a result, for
each partial mapping h ∈ T BMao

≤x , its parent f must be in
T BMa
≤x , since lbBMaf ≤ lbBMaoh ≤ x. Thus, the lemma holds. 2

From Lemma 5.3, we also know that the time complexity
of AStar-BMao is no larger than that of AStar-BMa.

Finally, we prove in the lemma below that lbBMaoh ≥ lbLSah

for every non-empty partial mapping h.

Lemma 5.4: For any mapping h = f ⊕ {vi+1 7→ u}, we have
lbBMaoh ≥ lbLSah .

Proof: The proof is similar to that of Lemma 4.3, but is
slightly more involved. Specifically, by comparing Equa-
tion (12) with Equation (2), we see that it suffices to prove
that for every mapping σ ∈ F(qf̄ , gf̄) s.t. σ(vi+1) = u, the
following holds:

mcf +
∑

v∈V (qf̄)
λBMaf (v, σ(v))

≥mch +Υ
(
LV (qh̄), LV (gh̄)

)
+Υ

(
LEI

(qh̄), LEI
(gh̄)

)
+

∑
v′∈V (qh)

Υ
(
LEC

(v′), LEC
(h(v′))

)
(13)

where lbBMaoh equals the minimum of the left hand side
among all σ ∈ F(qf̄ , gf̄) s.t. σ(vi+1) = u, and the right
hand side of the inequality is lbLSah . Recall that

mcf +
∑

v∈V (qf̄)
λBMaf (v, σ(v))

=mcf +
∑

v∈V (qf̄)
1l(v)̸=l(σ(v))

+ 1
2

∑
v∈V (qf̄)

Υ
(
LEI

(v), LEI
(σ(v))

)
+

∑
v∈V (qf̄)

∑
v′∈V (qf)

1l(v,v′)̸=l(σ(v),f(v′)) (14)

We compare the four components of the right hand side of
Inequality (13) with that of Equation (14) one-by-one. First,
as V (qf̄) = V (qh̄) ∪ {vi+1}, we have

mch = mcf + 1l(vi+1)̸=l(u) +
∑

v′∈V (qf)
1l(vi+1,v′)̸=l(u,f(v′))

Second, as
⊔

v∈V (qh̄)

{
l(v)

}
= LV (qh̄), and⊔

v∈V (qh̄)

{
l(σ(v))

}
= LV (gh̄), we have∑

v∈V (qf̄)
1l(v)̸=l(σ(v)) = 1l(vi+1)̸=l(u) +

∑
v∈V (qh̄)

1l(v)̸=l(σ(v))

≥ 1l(vi+1)̸=l(u) +Υ(LV (qh̄), LV (gh̄))

Third, as
⊔

v∈V (qh̄)
LEI

(v) = LEI
(qh̄) ⊔ LEI

(qh̄) and⊔
v∈V (qh̄)

LEI
(σ(v)) = LEI

(gh̄) ⊔ LEI
(gh̄), we have

1
2

∑
v∈V (qf̄)

Υ
(
LEI

(v), LEI
(σ(v))

)
= 1

2

∑
v∈V (qh̄)

Υ(LEI
(v), LEI

(σ(v))) + Υ(LEC
(vi+1), LEC

(u))

≥Υ
(
LEI

(qh̄), LEI
(gh̄)

)
+Υ

(
LEC

(vi+1), LEC
(u)

)
Forth, as

∑
v∈V (qh̄)

1l(v,v′) ̸=l(σ(v),h(v′)) ≥
Υ
(
LEC

(v′), LEC
(h(v′))

)
holds for every vertex v′ ∈ V (qh),

we have ∑
v∈V (qf̄)

∑
v′∈V (qf)

1l(v,v′)̸=l(σ(v),f(v′))

=
∑

v′∈V (qf)
1l(vi+1,v′)̸=l(u,f(v′))

+
∑

v∈V (qh̄)

∑
v′∈V (qf)

1l(v,v′)̸=l(σ(v),f(v′))

≥∑
v′∈V (qf)

1l(vi+1,v′)̸=l(u,f(v′))

+
∑

v′∈V (qf)
Υ
(
LEC

(v′), LEC
(h(v′))

)
Thus, the lemma holds. 2

5.3 Early Stopping and Maintaining an Upper Bound
In this subsection, we propose two optimization techniques
for AStar-BMao. Firstly, it is easy to see that Algorithm 3
computes the lower bounds for all children of f in non-
decreasing order regarding their lower bound costs. Thus,
if lbBMaoh computed for the child h is larger than the input
threshold τ , then we can skip the lower bound computation
for the remaining children of f as they are all guaranteed to
be larger than τ . We call this optimization early stopping.

Secondly, it is easy to see that f ⊕ σ∗ is a full mapping
from V (q) to V (g), where σ∗ is either computed in Algo-
rithm 2 or in Algorithm 3. Thus, we can obtain an upper
bound ub of ged(q, g) based on the editorial cost of f ⊕ σ∗.
For the problem of GED verification, we can directly return
true if this upper bound is no larger than τ . For the problem
of GED computation, we can maintain ub as the smallest
value among all the computed upper bounds; ub can be
used for early stopping as described above and also for
reducing main memory consumption, as we do not need
to push into Q partial mappings whose lower bounds are
no smaller than ub. Note that this optimization applies to
all of our algorithms, and is incorporated into all of our
algorithms by default.

6 EXPERIMENTS

We conduct extensive empirical studies to evaluate the
effectiveness and efficiency of our techniques. To do so, we
compare the following algorithms.

• AStar-LSa: the state-of-the-art algorithm in [1].
• AStar-BM: AStar (Algorithm 1) incorporated with the

lower bound lbBM described in Section 4.
• AStar-BMa: AStar (Algorithm 1) incorporated with

the lower bound lbBMa proposed in Section 4.
• AStar-BMao: AStar incorporated with the optimized

lower bound lbBMao proposed in Section 5 as well as
all the optimizations in Section 5.3.

• AStar-SMa: AStar incorporated with the lower bound
lbSMa that replaces the branch structure of lbBMa with
the star structure proposed in [10]; please refer to the
online Supplementary Material for details of lbSMa.

All our algorithms are implemented in C++ based on the
source code of AStar-LSa; specifically, we only replaced the
lower bound estimation function of AStar-LSa. 4 We do not
compare with other earlier algorithms such as CSI GED [3]
and Inves [4], as they have been shown to be outperformed
by AStar-LSa in [1]. All algorithms run in main memory. All
experiments, except the one about parallel graph similarity
search in Section 6.1, are run in single-thread mode and
conducted on a machine with an Intel Core i7-8700 3.2GHz
CPU and 64GB main memory running Ubuntu.

Datasets. Same as the existing works, we use both real graph
datasets and synthetic graph datasets to evaluate the algo-
rithms. We use two widely-used real graph datasets [3], [4],
[8], AIDS and PubChem. AIDS is an antivirus screen chemical
compound dataset published by the Developmental Thera-
peutics Program at NCI/NIH that contains 42, 689 graphs,5

4. The source code of our algorithms will be published at https://
lijunchang.github.io/Graph Edit Distance/.

5. https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz

https://lijunchang.github.io/Graph_Edit_Distance/
https://lijunchang.github.io/Graph_Edit_Distance/
https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz

TABLE 2: Statistics of real graph datasets (|ΣV |: number of
distinct vertex labels, |ΣE |: number of distinct edge labels)

Datasets |D| |V | |E| |ΣV | |ΣE |
max avg std max avg std

AIDS 42, 689 222 25.60 12.19 247 27.53 13.30 66 3
PubChem 23, 903 88 48.33 9.34 92 50.82 9.87 10 3
Cancer 32, 557 229 26.33 11.78 236 28.32 12.97 68 3

and PubChem is a chemical compound dataset that contains
23, 903 graphs.6 In addition, we also use another real dataset
Cancer, which is a human tumor cell line screen dataset
that contains 32, 577 graphs.7 Statistics of these real datasets
are shown in Table 2, where |D| is the number of graphs.
max /avg/std |V | are respectively the maximum, average
and standard deviation for the graphs’ vertex numbers.
max /avg/std |E| are respectively the maximum, average
and standard deviation for the graphs’ edge numbers. |ΣV |
is the number of distinct vertex labels, and |ΣE | is the
number of distinct edge labels.

We also generate synthetic random graphs GR by the
graph generator GraphGen8. Specifically, we generate five
groups of random graphs GR, where the number of vertices
for each graph is chosen from {64, 128, 256, 512, 1024}.
Each group of GR contains 51 graphs with the same number
of vertices, and is generated as follows. We first generate
a graph with i vertices by invoking GraphGen, and then
randomly apply x edit operations on the graph 10 times to
get 10 graphs, where x is chosen from {2, 5, 10, 20, 40}.
Each graph generated by GraphGen has an edge density

2|E|
|V |×(|V |−1) of 20%, and has five distinct vertex labels and
two distinct edge labels, similar to that used in [1], [3].

Evaluation Metrics. For each testing, we record the pro-
cessing time, search space, and main memory usage. The
search space is defined as the number of invocations of
Line 5 of Algorithm 1, i.e., the number of lower bound
computations for all children of a partial mapping. The
reported memory usage is “the maximum resident set size
of the process during its lifetime”, as measured by the
command /usr/bin/time9. We set a timeout of 1 hour (i.e.,
3.6 × 103 seconds). If an algorithm takes more than 1 hour
to process one graph pair, then we record this time as 1 hour
and label the algorithm with “tle” in the plot. We report the
processing time and search space of an algorithm as “oom”
if it runs out-of-memory.

6.1 Results for Graph Similarity Search

We first evaluate AStar-BMao against the state-of-the-art
algorithm AStar-LSa for index-free graph similarity search,
i.e., without pre-constructing an index offline [1], [3], [4].
For each of the real datasets, we randomly select 100 graphs
from the corresponding datasets as query graphs. The num-
ber of vertices in the query graphs ranges from 10 to 63 for
AIDS, from 27 to 80 for PubChem, from 10 to 101 for Cancer.

Same as existing works [1], [4], [8], we first apply label
filter, denoted LabelF, to filter out unpromising data graphs.

6. http://pubchem.ncbi.nlm.nih.gov: Compound 000975001 001000000.sdf
7. https://cactus.nci.nih.gov/download/nci/CAN2DA99.sdz
8. http://www.cse.cuhk.edu.hk/∼jcheng/graphgen1.0.zip
9. http://man7.org/linux/man-pages/man1/time.1.html

τ Results AStar-LSa AStar-BMao
Time(s) Mem SS Time(s) Mem SS

1 135 0.10 36M 8.9× 103 0.13 36M 4.3× 103

3 213 0.65 36M 2.1× 105 0.78 36M 4.3× 104

5 480 7.5 36M 4.7× 106 5.4 36M 4.3× 105

7 1, 852 109 47M 8.3× 107 49 37M 5.0× 106

9 9, 220 1, 621 252M 1.1× 109 563 47M 5.8× 107

11 38, 425 20, 891 4.3G 1.4× 1010 5, 756 299M 5.5× 108

(a) AIDS

τ Results AStar-LSa AStar-BMao
Time(s) Mem SS Time(s) Mem SS

1 183 0.18 35M 6.6× 104 0.36 35M 2.5× 104

3 243 0.65 41M 2.1× 105 2.02 36M 1.0× 105

5 358 9.6 52M 4.7× 106 14.4 36M 5.1× 105

7 529 205 1.7G 1.0× 108 158 37M 5.6× 106

9 931 2, 807 9.7G 1.3× 109 1, 662 50M 5.9× 107

11 1, 707 43, 492 46.5G 2.0× 1010 18, 099 288M 6.4× 108

(b) PubChem

τ Results AStar-LSa AStar-BMao
Time(s) Mem SS Time(s) Mem SS

1 122 0.092 29M 7.9× 103 0.119 29M 4.0× 103

3 212 0.641 29M 2.1× 105 0.848 29M 4.0× 104

5 406 7.6 34M 4.5× 106 7.0 30M 4.2× 105

7 1, 187 102 77M 7.4× 107 52 35M 4.5× 106

9 4, 952 1, 483 80M 1.1× 109 514 35M 4.8× 107

11 20, 811 19, 249 1.7G 1.3× 1010 5, 154 65M 4.7× 108

(c) Cancer

Fig. 6: Aggregated results for graph similarity search with
100 queries (SS: Search Space)

That is, given a query graph q, we compute the label set-
based lower bound between q and each graph g in the
database; if the lower bound between q and g is larger than
τ , then g is not similar to q and is pruned. The remaining
candidates are verified by AStar-BMao or AStar-LSa. Note
that, the time of LabelF is included in our reported time.

The aggregated results for 100 queries are shown in
Figure 6. When τ increases, the search space and memory
consumption of AStar-LSa increase dramatically, and much
faster than AStar-BMao. In particular, the peak memory
consumption of AStar-LSa on PubChem for τ = 11 is 46.5GB,
while that of AStar-BMao is only 288MB. This is the result of
the much smaller search space of AStar-BMao compared with
AStar-LSa. This also indicates that the lower bound lbBMao is
tighter than lbLSa, as the search space is inversely related to
the tightness of the lower bound.

Regarding the running time, AStar-LSa runs faster than
AStar-BMao for small τ . This is because, for small τ , the
search spaces between AStar-LSa and AStar-BMao do not
differ significantly, while the lower bound computation of
lbLSa is much faster than lbBMao. Nevertheless, for τ ≥ 5 on
AIDS, τ ≥ 7 on PubChem, and τ ≥ 5 on Cancer, AStar-BMao
runs faster than AStar-LSa. Note that, these τ values are not
too large for typical queries, as the aggregated number of
results for 100 queries on AIDS is 480 for τ = 5, on PubChem
is 529 for τ = 7, and on Cancer is 406 for τ = 5 (see
the second columns of the tables in Figure 6). Thus, for
k-nearest neighbor queries that aims to find the k graphs
in the database that are most similar to a given query
graph, it is expected that τ would be large for some query
graphs; we will investigate k-nearest neighbor queries in
our future work. Moreover, as the running time increases

http://pubchem.ncbi.nlm.nih.gov
https://cactus.nci.nih.gov/download/nci/CAN2DA99.sdz
http://www.cse.cuhk.edu.hk/~jcheng/graphgen1.0.zip
http://man7.org/linux/man-pages/man1/time.1.html

10
2

10
3

10
4

1 2 4 8 16 32

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

#Cores =

AStar-BMao
Idea Parallelization

(a) Processing time (AIDS)

10
2

10
3

1 2 4 8 16 32

M
e

m
o

ry
 (

M
B

)

#Cores =

AStar-BMao

(b) Memory (AIDS)

10
3

10
4

1 2 4 8 16 32

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

#Cores =

AStar-BMao
Idea Parallelization

(c) Processing time (PubChem)

10
2

10
3

1 2 4 8 16 32

M
e

m
o

ry
 (

M
B

)

#Cores =

AStar-BMao

(d) Memory (PubChem)

Fig. 7: Parallel graph similarity search by using multiple
CPU cores

TABLE 3: Parameter for groups of graph pairs

Datasets |V | ged
AIDS {20, 30, 40, 50, 60} {5, 6, 7, 8, . . . , 13, 14}

PubChem {20, 30, 40, 50, 60} {5, 6, 7, 8, . . . , 13, 14}
GR {64, 128, 256, 512, 1024} {10, 20, 40, 80}

along with τ , it is more meaningful to reduce the running
time for large τ , e.g., AStar-BMao reduces the aggregated
running time on PubChem for τ = 11 from 12 hours to 5
hours. By comparing the different tables, we see that Cancer
has similar query performance as AIDS. Thus, we exclude
Cancer in the remaining testings.

Parallel Graph Similarity Search. We can reduce the run-
ning time of index-free algorithms, e.g., AStar-BMao, for
graph similarity search by utilizing multiple CPU cores. It
is straightforward to parallelize these algorithms, i.e., we
can verify ged(q, g) simultaneously for multiple data graphs
g. Specifically, we use openMP to parallelize the “for loop”
for iterating though all data graphs in a database. The
preliminary results by varying the number of CPU cores
from 1 to 32 are shown in Figure 7; this set of experiments is
conducted on a different machine with an Intel(R) Xeon(R)
Platinum 8160 CPU@2.10GHz and 48 physical CPU cores.
In Figure 7, we also show the processing time that would
be achieved by an idea parallelization, i.e., the processing
time when running on a single core divided by the number
of cores. AStar-BMao achieves almost linear speedup. The
memory consumption increases as there are multiple con-
currently running copies of GED verification; nevertheless,
this is affordable as the memory footprint of AStar-BMao is
small. Note that, here we only exploit the intra-query par-
allelization between GED verifications. By exploiting inter-
query parallelization and the parallelization within a single
GED verification, it is anticipated that the running time
can be further improved; we leave a detailed exploration
of parallelization to our future work.

6.2 Results for GED Verification

To conduct a more detailed analysis of our algorithms, we
generate graph pairs for GED verification as follows. For
each graph dataset and a specific number i of vertices, we
first select the graphs whose sizes are within the range
of [i − 3, i + 3], and then partition the set of all graph

AStar-BMao AStar-BMao/U AStar-BMao/EU

10
-3

10
-2

10
-1

10
0

5 7 9 11 13

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

τ=

(a) AIDS (|V | = 30)

10
-3

10
-2

10
-1

10
0

10
1

10 20 40 80

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

τ=

(b) GR (|V | = 64)

Fig. 8: Evaluate our optimization techniques (vary τ)

pairs among the selected graphs into different groups with
respect to their GED values. The parameters of the resulting
groups are shown in Table 3, where |V | is the (approximate)
size of graphs in the group, and ged is the GED for the graph
pairs in the group. Finally, 20 graph pairs are randomly
sampled from each group. For GED verification, we union
all the obtained groups for each specific |V | (i.e., union the
groups corresponding to different ged values), and report the
average processing time for each query τ . Default values of |V |
are in boldface in Table 3.

Evaluate Our Optimization Techniques. In this testing,
we evaluate the effect of our two optimization tech-
niques proposed in Section 5.3: early stopping and main-
taining an upper bound. We additionally implemented
AStar-BMao/U which is AStar-BMao without upper bound-
ing, and AStar-BMao/EU which is AStar-BMao without early
stopping and without upper bounding. The results on
AIDS and GR are shown in Figure 8, while the result on
PubChem is similar and is omitted due to limit of space.
We can see that both early stopping and upper bounding
improve the efficiency. Specifically, AStar-BMao/U outper-
forms AStar-BMao/EU on AIDS due to incorporating the
early stopping optimization that stops Algorithm 3 once the
lower bound computed at Line 8 is larger than τ . AStar-BMao
outperforms AStar-BMao/U on GR due to the upper bound-
ing optimization that immediately returns true once an
upper bound, computed as the editorial cost of a heuristic
mapping from V (q) to V (g), is no larger than τ . Thus,
we adopt both optimizations in the following experiments;
note that all our algorithms adopt the upper bounding
optimization.

Evaluate Different Lower Bounds. In this testing, we run
AStar-BMao against AStar-BMa, AStar-BM, AStar-SMa, and
AStar-LSa to evaluate the effect of different lower bounds.
Note that, all these algorithms are implemented based on
the same codebase, and they differ only in lower bound es-
timation. The results by varying τ are shown in Figure 9. We
can see that AStar-BM has the largest memory footprint and
search space and easily runs out-of-memory, and AStar-SMa
has the second largest memory footprint and search space
and cannot finish within 10 hours for τ ≥ 9 (denoted as tle
in the corresponding plots), due to the loose lower bounds
lbBM and lbSMa; thus, we do not run these two algorithms on
GR. AStar-BMa has the smallest memory footprint and search
space due to computing the tightest lower bound among
them. Nevertheless, AStar-BMa runs slower than AStar-LSa
on AIDS and PubChem, this is because AStar-BMa computes
the lower bounds much slower than AStar-LSa. Overall,
AStar-BMao slightly increases the memory consumption and

AStar-BMao AStar-LSa AStar-BMa AStar-SMa AStar-BM

tle

10
-3

10
-2

10
-1

10
0

10
1

5 7 9 11 13

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

τ=

(a) Processing time (AIDS, |V | = 30)

oom

10
0

10
1

10
2

10
3

10
4

5 7 9 11 13

M
e

m
o

ry
 (

M
B

)

τ=

(b) Memory (AIDS, |V | = 30)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

5 7 9 11 13

S
e

a
rc

h
 S

p
a

c
e

τ=

(c) Search Space (AIDS, |V | = 30)

tle

10
-3

10
-2

10
-1

10
0

10
1

5 7 9 11 13
P

ro
c
e

s
s
in

g
 T

im
e

 (
s
)

τ=

(d) Processing time (PubChem, |V | =
30)

oom

10
0

10
1

10
2

10
3

10
4

5 7 9 11 13

M
e

m
o

ry
 (

M
B

)

τ=

(e) Memory (PubChem, |V | = 30)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

5 7 9 11 13

S
e

a
rc

h
 S

p
a

c
e

τ=

(f) Search Space (PubChem, |V | =
30)

10
-3

10
-2

10
-1

10
0

10 20 40 80

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

τ=

(g) Processing time (GR, |V | = 64)

oom

10
0

10
1

10
2

10
3

10
4

10 20 40 80

M
e

m
o

ry
 (

M
B

)

τ=

(h) Memory (GR, |V | = 64)

Fig. 9: Evaluate different lower bounds (vary τ)

 0

 1

 2

 3

 4

 5

 6

 7

5 7 9 11 13

G
a

p
 t

o
 G

E
D

ged=

LSa BMao BMa

(a) AIDS (|V | = 30)

 0

 1

 2

 3

 4

 5

 6

5 7 9 11 13

G
a

p
 t

o
 G

E
D

ged=

LSa BMao BMa

(b) PubChem (|V | = 30)

Fig. 10: Gap between lower bound and GED (vary groups)

search space compared with AStar-BMa, but runs faster
than both AStar-BMa and AStar-LSa. AStar-LSa runs out-of-
memory on GR for τ ≥ 40. We also observe that search space
and memory consumption correlate well to each other.

To explicitly compare the tightness of the three lower
bounds lbLSa, lbBMao and lbBMa, we also record the gap be-
tween the computed lower bound value and the actual GED
for the three lower bound estimation techniques. Specifi-
cally, we record the gap for the special partial mapping
f = {v 7→ u}, where v is the first vertex in the matching
order and u is the vertex to which v maps in an optimal
mapping (i.e., giving the exact GED). The average results
for all graph pairs in the five groups of AIDS and PubChem
with |V | = 30 corresponding to ged = 5, 7, 9, 11, 13 are il-
lustrated in Figure 10. We can see that lbLSaf ≤ lbBMaof ≤ lbBMaf ,
conforming to our theoretical analysis.

Scalability Testing of AStar-BMao. The results of scalability
testing of AStar-BMao by varying |V | and for different τ
values are shown in Figure 11. Same as the above testings,
for each |V |, we union all the groups corresponding to that

10
-3

10
-2

10
-1

10
0

10
1

20 30 40 50 60

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

|V|=

τ=9 τ=11 τ=13

(a) Processing time (AIDS)

10
0

10
1

10
2

10
3

20 30 40 50 60

M
e

m
o

ry
 (

M
B

)

|V|=

τ=9 τ=11 τ=13

(b) Memory (AIDS)

10
-3

10
-2

10
-1

10
0

20 30 40 50 60

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

|V|=

τ=9 τ=11 τ=13

(c) Processing time (PubChem)

10
0

10
1

10
2

20 30 40 50 60

M
e

m
o

ry
 (

M
B

)

|V|=

τ=9 τ=11 τ=13

(d) Memory (PubChem)

10
-3

10
-2

10
-1

10
0

10
1

64 128 256 512 1024

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

|V|=

τ=20 τ=40 τ=80

(e) Processing time (GR)

10
0

10
1

10
2

64 128 256 512 1024

M
e

m
o

ry
 (

M
B

)

|V|=

τ=20 τ=40 τ=80

(f) Memory (GR)

Fig. 11: Scalability testing of AStar-BMao (vary |V |)

particular |V |, and report the average processing time for
each query τ . We can see that AStar-BMao scales well in
terms of both processing time and main memory consump-
tion, for large graph sizes and for large threshold values.

6.3 Results for GED Computation
In this subsection, we compare AStar-BMao against
AStar-LSa and DFS-BMao for exact GED computation.
DFS-BMao is a variant of AStar-BMao that traverses the
search tree T in a depth-first manner, and is implemented
in the same way as the DFS-LSa algorithm in [1]; more
detailed discussion about these two search paradigms can
be found in [1]. We compute GED for graph pairs in the five
groups of AIDS and PubChem with |V | = 30 corresponding
to ged = 5, 7, 9, 11, 13, and in the four groups of GR with
|V | = 64 corresponding to ged = 10, 20, 40, 80, as obtained
in Section 6.2. Each group contains 20 graph pairs, and we
report the average processing time. Note that, although all
graph pairs in the same group share a GED, the algorithms
are unaware of the GED values.

The results are shown in Figure 12, where we re-
port both the processing time and memory usage. We see
that AStar-BMao runs slower than AStar-LSa for small ged
but runs faster than AStar-LSa for large ged. More im-
portantly, the memory usage of AStar-LSa increases very
fast and much faster than AStar-BMao, which results in
AStar-LSa running out-of-memory on GR for ged ≥ 40.
Thus, AStar-BMao scales much better than AStar-LSa. On
the other hand, DFS-BMao consistently runs slower than
AStar-BMao, due to the large search space of the depth-first
search paradigm [1]; note that DFS-BMao does not finish
within 10 hours for the 20 graph pairs in the groups of GR
for τ ≥ 40.

Compare with Machine Learning Method GENN-A∗. In
this testing, we compare the efficiency of AStar-BMao with
the machine learning method GENN-A∗ [27] that predicts
not just the GED value but also an edit path. The average
processing time of AStar and GENN-A∗ on the two datasets

AStar-BMao AStar-LSa DFS-BMao

10
-3

10
-2

10
-1

10
0

10
1

10
2

5 7 9 11 13

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

ged=

(a) Processing time (AIDS, |V | = 30)

10
0

10
1

10
2

10
3

10
4

5 7 9 11 13

M
e

m
o

ry
 (

M
B

)

ged=

(b) Memory (AIDS, |V | = 30)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

5 7 9 11 13

S
e

a
rc

h
 S

p
a

c
e

ged=

(c) Search Space (AIDS, |V | = 30)

10
-3

10
-2

10
-1

10
0

10
1

10
2

5 7 9 11 13
P

ro
c
e

s
s
in

g
 T

im
e

 (
s
)

ged=

(d) Processing time (PubChem, |V | =
30)

10
0

10
1

10
2

10
3

10
4

5 7 9 11 13

M
e

m
o

ry
 (

M
B

)

ged=

(e) Memory (PubChem, |V | = 30)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

5 7 9 11 13

S
e

a
rc

h
 S

p
a

c
e

ged=

(f) Search Space (PubChem, |V | =
30)

tle

10
-3

10
-2

10
-1

10
0

10
1

10
2

10 20 40 80

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

ged=

(g) Processing time (GR, |V | = 64)

oom

10
0

10
1

10
2

10
3

10
4

10 20 40 80

M
e

m
o

ry
 (

M
B

)

ged=

(h) Memory (GR, |V | = 64)

Fig. 12: GED computation by varying groups

TABLE 4: Compare with GENN-A∗

AIDS’ Linux
GENN-A∗ 7.73 (seconds) 1.19 (seconds)
AStar-BMao 0.18 (milliseconds) 0.06 (milliseconds)

AIDS’ and Linux that are used in [27] is reported in Table 4.
These two new datasets AIDS’ and Linux are obtained
from [27], where AIDS’ is a subset of the AIDS dataset used
in our previous evaluations; note that, graphs in these two
datasets have at most 10 vertices and no edge labels. We can
see that AStar-BMao outperforms GENN-A∗ by more than 4
orders of magnitude. Moreover, it is worth pointing out that
AStar-BMao computes the optimal edit path while GENN-A∗

does not guarantee optimality.

7 CONCLUSION

In this paper, we proposed a tighter lower bound es-
timation for GED verification and computation, as well
as efficient algorithms for computing the lower bounds.
Extensive performance studies demonstrated the effective-
ness and efficiency of our techniques. In particular, our
AStar-BMao algorithm outperforms the state-of-the-art al-
gorithm AStar-LSa in terms of both processing time and
main memory consumption, for both graph similarity search
and GED verification/computation. One possible direction
of future work is to design better lower bound estimation
techniques. Another possible direction of future work is
to revise our implementations to handle non-uniform edit
costs, and to process k-nearest neighbor queries.

ACKNOWLEDGEMENTS

Lijun Chang is supported by the Australian Research Coun-
cil (ARC) Funding of FT180100256. Lu Qin is supported by
ARC FT200100787 and ARC DP210101347. Wenjie Zhang is
supported by ARC DP200101116,

REFERENCES

[1] L. Chang, X. Feng, X. Lin, L. Qin, W. Zhang, and D. Ouyang,
“Speeding up ged verification for graph similarity search,” in Proc.
of ICDE’20, 2020.

[2] L. Chang, X. Feng, X. Lin, L. Qin, and W. Zhang, “Efficient graph
edit distance computation and verification via anchor-aware lower
bound estimation,” CoRR, vol. abs/1709.06810, 2017.

[3] K. Gouda and M. Hassaan, “CSI GED: An efficient approach for
graph edit similarity computation,” in Proc. of ICDE’16, 2016.

[4] J. Kim, D. Choi, and C. Li, “Inves: Incremental partitioning-based
verification for graph similarity search,” in Proc. of EDBT’19, 2019.

[5] Y. Liang and P. Zhao, “Similarity search in graph databases: A
multi-layered indexing approach,” in Proc. of ICDE’17, 2017, pp.
783–794.

[6] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin, “An efficient
graph indexing method,” in Proc. of ICDE’12, 2012, pp. 210–221.

[7] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa, “Efficient pro-
cessing of graph similarity queries with edit distance constraints,”
VLDB J., vol. 22, no. 6, pp. 727–752, 2013.

[8] X. Zhao, C. Xiao, X. Lin, W. Zhang, and Y. Wang, “Efficient
structure similarity searches: a partition-based approach,” VLDB
J., vol. 27, no. 1, 2018.

[9] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, “Efficient graph
similarity search over large graph databases,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 4, pp. 964–978, 2015.

[10] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” PVLDB, vol. 2, no. 1,
pp. 25–36, 2009.

[11] M. Neuhaus and H. Bunke, “Edit distance-based kernel functions
for structural pattern classification,” Pattern Recognition, 2006.

[12] A. Robles-Kelly and E. R. Hancock, “Graph edit distance from
spectral seriation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 3, 2005.

[13] H. Ogata, W. Fujibuchi, S. Goto, and M. Kanehisa, “A heuristic
graph comparison algorithm and its application to detect func-
tionally related enzyme clusters,” Nucleic acids research, 2000.

[14] M. Bernard, N. Richard, and J. Paquereau, “Functional brain
imaging by eeg graph-matching,” in Proc. of EMB’06, 2006.

[15] A. Sanfeliu and K. Fu, “A distance measure between attributed
relational graphs for pattern recognition,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 13, no. 3, pp. 353–362, 1983.

[16] K. Riesen, S. Emmenegger, and H. Bunke, “A novel software
toolkit for graph edit distance computation,” in Proc. of GbRPR’13,
2013.

[17] K. Riesen, S. Fankhauser, and H. Bunke, “Speeding up graph
edit distance computation with a bipartite heuristic,” in Proc. of
MLG’07, 2007.

[18] Z. Abu-Aisheh, R. Raveaux, J. Ramel, and P. Martineau, “An
exact graph edit distance algorithm for solving pattern recognition
problems,” in Proc. of ICPRAM’15, 2015, pp. 271–278.

[19] D. B. Blumenthal and J. Gamper, “Exact computation of graph edit
distance for uniform and non-uniform metric edit costs,” in Proc.
of GbRPR’17, 2017, pp. 211–221.

[20] J. J. McGregor, “Backtrack search algorithms and the maximal
common subgraph problem,” Softw., Pract. Exper., 1982.

[21] F. N. Abu-Khzam, N. F. Samatova, M. A. Rizk, and M. A. Langston,
“The maximum common subgraph problem: Faster solutions via
vertex cover,” in Proc. of AICCSA’07, 2007.

[22] E. B. Krissinel and K. Henrick, “Common subgraph isomorphism
detection by backtracking search,” Softw., Pract. Exper., 2004.

[23] I. Koch, “Enumerating all connected maximal common subgraphs
in two graphs,” Theor. Comput. Sci., 2001.

[24] J. W. Raymond, E. J. Gardiner, and P. Willett, “RASCAL: calcu-
lation of graph similarity using maximum common edge sub-
graphs,” Comput. J., 2002.

[25] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,”
in Proc. of WSDM’19, 2019, pp. 384–392.

[26] Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang, “Learning-based ef-
ficient graph similarity computation via multi-scale convolutional
set matching,” in Proc. of AAAI’20, 2020, pp. 3219–3226.

[27] R. Wang, T. Zhang, T. Yu, J. Yan, and X. Yang, “Combinatorial
learning of graph edit distance via dynamic embedding,” in Proc.
of CVPR’21, 2021, pp. 5241–5250.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms. McGraw-Hill Higher Education, 2001.

[29] G. A. Korsah, A. T. Stentz, and M. B. Dias, “The dynamic hungar-
ian algorithm for the assignment problem with changing costs,”
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-
TR-07-27, July 2007.

Lijun Chang is a Senior Lecturer and ARC Fu-
ture Fellow in the School of Computer Science at
The University of Sydney. He received Bachelor
degree from Renmin University of China in 2007,
and Ph.D. degree from The Chinese University
of Hong Kong in 2011. He worked as a Postdoc
and then DECRA research fellow at the Univer-
sity of New South Wales from 2012 to 2017. His
research interests are in the fields of big graph
(network) analytics, with a focus on designing
practical algorithms and developing theoretical

foundations for massive graph analysis.

Xing Feng received his PhD degree in computer
science and engineering from the University of
New South Wales in 2017. His interest is in
graph connectivity computation and graph sim-
ilarity computation.

Kai Yao is currently a PhD student at the School
of Computer Science, University of Sydney. His
research interest is in graph data processing.

Lu Qin received his BE degree from depart-
ment of Computer Science and Technology in
the Renmin University of China in 2006, and
PhD degree from Department of Systems En-
gineering and Engineering Management in the
Chinese University of Hong Kong in 2010. He
is now an associate professor in the Centre of
Quantum Computation and Intelligent Systems
(QCIS) in the University of Technology Sydney
(UTS). His research interests include parallel
big graph processing, I/O efficient algorithms on

massive graphs, and keyword search in relational databases.

Wenjie Zhang is a full professor in School of
Computer Science and Engineering, the Univer-
sity of New South Wales. Her research interests
lie in data management and analytics for large-
scale data, especially graph, spatial-temporal,
and image data. She has published over 160
research papers where over 100 of her papers
are accepted by the top venues in database area
such as SIGMOD, VLDB, ICDE, PODS, TODS,
VLDBJ, and TKDE. Her papers receive one of
the Best Papers from SIGMOD 2020. In 2019,

she received the prestigious Chris Wallace Award from Australasian
Computing Research and Education (CORE) for her significant contri-
butions to the area of large-scale graph data processing. She serves
as an Associate Editor for TKDE, Associate Editor for PVLDB 2022,
and (senior) PC member for leading conferences in database and data
mining.

APPENDIX A
ANCHOR-AWARE STAR MATCH-BASED LOWER
BOUND

The star structure has been used in the literature for comput-
ing the lower bound of GED between two graphs without
edge labels [10]. We extend it to handle edge labels as
follows.

Definition 1.1: The star of a vertex v in a graph q is
S(v) = (l(v), LE(v), LV (v)), where LV (v) denotes the multi-
set of labels of v’s neighbors.

Based on the star structures S(v) and S(u), we define
the cost of mapping v ∈ qf̄ to u ∈ gf̄ as,

λSM(v, u) := 1l(v)̸=l(u)+
1
2Υ

(
LE(v), LE(u)

)
+Υ

(
LV (v), LV (u)

)
Thus, λSM(v, u) = λBM(v, u) + Υ

(
LV (v), LV (u)

)
. The star

match-based lower bound [10] is,

SMf (qf̄ , gf̄) :=
minσ∈F(q

f̄
,g

f̄
)

∑
v∈V (q

f̄
) λ

SM(v,σ(v))

max{4,∆(qf̄)+1,∆(gf̄)+1}

where ∆(qf̄) and ∆(gf̄) denote the maximum vertex degree
in qf̄ and gf̄ , respectively.

Anchor-aware Star Match-based Lower Bound. Similarly,
by exploiting the information of anchored vertices, we revise
the star structure to define the cost of mapping v ∈ qf̄ to
u ∈ gf̄ as,

λSMaf (v, u) :=1l(v) ̸=l(u) +
1
2 ×Υ

(
LEI

(v), LEI
(u)

)
+∑

v′∈V (qf)
1l(v,v′) ̸=l(u,f(v′)) +Υ

(
LV (v), LV (u)

)
Thus, λSMaf (v, u) = λBMaf (v, u) + Υ

(
LV (v), LV (u)

)
. Then, we

define the anchor-aware star match-based lower bound as,

lbSMaf := mcf + SMaf (qf̄ , gf̄)

SMaf (qf̄ , gf̄) :=
minσ∈F(qf̄ ,gf̄)

∑
v∈V (q

f̄
) λ

SMa
f (v,σ(v))

max{4,∆(qf̄)+1,∆(gf̄)+1}

It can be easily verified that λSMaf (v, u) ≥ λSM(v, u), and thus
we have SMaf (qf̄ , gf̄) ≥ SMf (qf̄ , gf̄).

Lemma 1.1: For a partial mapping f , we have lbBMaf ≥ lbSMaf if
BMaf (qf̄ , gf̄) ≥ |V (qf̄)|.
Proof: Let d be max{4,∆(qf̄) + 1,∆(gf̄) + 1}, and σ be the
mapping obtained by

argminσ′∈F(qf̄ ,gf̄)

∑
v∈qf̄

λBMaf (v, σ′(v)).

Then, we have

d×
(
BMaf (qf̄ , gf̄)− SMaf (qf̄ , gf̄)

)
=
(
d×minσ′∈F(qf̄ ,gf̄)

∑
v∈qf̄

λBMaf (v, σ′(v))
)

−minσ′′∈F(qf̄ ,gf̄)

∑
v∈qf̄

λSMaf (v, σ′′(v))

≥
(
d×∑

v∈qf̄
λBMaf (v, σ(v))

)
−∑

v∈qf̄
λSMaf (v, σ(v))

=
∑

v∈qf̄

(
d× λBMaf (v, σ(v))− λSMaf (v, σ(v))

)

Consider each component in the last expression and let
u denote σ(v). Based on the property that λSMaf (v, u) =

λBMaf (v, u) + Υ
(
LV (v), LV (u)

)
, we have

d× λBMaf (v, u)− λSMaf (v, u)

=d× λBMaf (v, u)−
(
λBMaf (v, u) + Υ

(
LV (v), LV (u)

))
=(d− 1)× λBMaf (v, u)−Υ

(
LV (v), LV (u)

)
≥(d− 1)×

(
λBMaf (v, u)− 1

)
where the last inequality follows from the fact that
Υ
(
LV (v), LV (u)

)
≤ max

{
|LV (v)|, |LV (u)|

}
≤ d− 1.

Thus, from the above, we have

d×
(
BMaf (qf̄ , gf̄)− SMaf (qf̄ , gf̄)

)
≥∑

v∈qf̄

(
d× λBMaf (v, σ(v))− λSMaf (v, σ(v))

)
≥(d− 1)×∑

v∈qf̄

(
λBMaf (v, σ(v))− 1

)
=(d− 1)×

(
BMaf (qf̄ , gf̄)− |V (qf̄)|

)
Therefore, if BMaf (qf̄ , gf̄) ≥ |V (qf̄)|, then we have
BMaf (qf̄ , gf̄) ≥ SMaf (qf̄ , gf̄). 2

Note that, the above lemma is conservative, while in
practice, lbSMaf is even smaller than lbLSaf as verified by our
experiments in Section 6.2. The main reason is that, as the
label of a vertex v is considered multiple times in the star
structures of v’s neighbors, the cost λSMaf (v, u) has to be
normalized by a large factor of max{4,∆(qf̄)+1,∆(gf̄)+1}.

	Introduction
	Preliminaries
	State-of-the-art Approach AStar-LSa
	A Tighter Lower Bound Estimation
	Anchor-Aware Branch Match-based Lower Bound lbBMa
	Computing Lower Bound Cost lb fBMa
	Comparing lbBMa with lbLSa

	Trading Tightness for Efficiency
	Optimized Anchor-Aware Branch Match-based Lower Bound lbBMao
	Time and Space Complexity of AStar-BMao
	Early Stopping and Maintaining an Upper Bound

	Experiments
	Results for Graph Similarity Search
	Results for GED Verification
	Results for GED Computation

	Conclusion
	References
	Biographies
	Lijun Chang
	Xing Feng
	Kai Yao
	Lu Qin
	Wenjie Zhang

	Appendix A: Anchor-aware Star Match-based Lower Bound

