Efficient Closest Community Search over Large Graphs

Mingshen Cai' and Lijun Chang?

I Canva*, sam.cai@canva.com
2 The University of Sydney, 1i jun. chang@sydney. edu.au

Abstract. This paper studies the closest community search problem. Given a
graph G and a set of query vertices Q, the closest community of Q in G is the
connected subgraph of G that contains Q, is most cohesive (i.e., with the largest
possible minimum vertex degree), is closest to Q, and is maximal. We show that
this can be computed via a two-stage approach: (1) compute the maximal con-
nected subgraph gy of G that contains Q and is most cohesive, and (2) iteratively
remove from g the vertex that is furthest to Q and subsequently also other ver-
tices that violate the cohesiveness requirement. The last non-empty subgraph is
the closest community of Q in G. We first propose baseline approaches for the
two stages that run in O(n + m) and O(ny X my) time, respectively, where n (resp.
ng) and m (resp. my) are the number of vertices and edges in G (resp. go). Then,
we develop techniques to improve the time complexities of the two stages into
O(ng + mg) and O(mgy + ng log ng), respectively. Moreover, we further design an
algorithm CCS with the same time complexity as O(imy + ny log ny), but performs
much better in practice. Extensive empirical studies demonstrate that CCS can
efficiently compute the closest community over large graphs.

1 Introduction

The graph model has been widely used to capture the information of entities and their
relationships, where entities are represented by vertices and relationships are repre-
sented by edges [13]. With the proliferation of graph data, research efforts have been
devoted to managing, mining and querying large graphs. In this paper, we study the
problem of community search for a given set of query vertices, where a community is
a group of vertices that are densely connected to each other [7, 9].

Traditionally, the problem of community detection has been extensively studied
(e.g., see the survey [7] and references therein), which aims to mine the community
structures in a graph. Essentially, it partitions vertices of a graph into disjoint or overlap-
ping groups such that each group represents one community. Community detection is a
one-time task, and the result is the same set of communities for different users and thus
does not reflect users’ personalized information. To remedy the non-personalization
issue of community detection, there is a growing interest to search communities for
user-given query vertices which facilitates a user-centric personalized search (e.g., see
the tutorial [9] and references therein). This querying problem is known as the com-
munity search problem. In principle the total number of distinct communities that are
discoverable by community search can be much larger than n — the number of vertices

* The work was done while Mingshen Cai was with The University of Sydney

in the data graph — and even may be exponential, while most of the community detec-
tion methods can only identify at most n distinct communities. As a result, community
search has many applications [6, 8, 11], such as advertisements targeting, recommenda-
tion in online social networks, and metabolic network analysis.

Given a data graph G = (V, E) and a set of one or more query vertices Q C V,
the problem of community search aims to find a connected subgraph of G that con-
tains all query vertices, and is (most) cohesive. In the literature, the cohesiveness of a
subgraph is usually measured by its minimum vertex degree (aka k-core) [2,6, 12, 14],
minimum number of triangles each edge participates in (aka k-truss) [10], or edge con-
nectivity [3]. Among them, the minimum vertex degree-based cohesiveness measure is
popularly used due to its simplicity and easy computability. However, there could be an
exponential number of subgraphs of G that contain Q and have the same cohesiveness
(i.e., minimum vertex degree). In light of this, Cui et al. [6] reports an arbitrary one sat-
isfying the requirements as the result, while Sozio and Gionis [14] introduces a distance
threshold 7 such that all vertices in the reported subgraph should be within distance 7
from the query vertices. For the former, it is obviously not a good idea to report an ar-
bitrary one since vertices in the result could be far away from the query vertices, while
for the latter it may not be an easy task to specify an appropriate distance threshold 7.

In this paper, we formulate the closest community search problem. Specifically, the
closest community of Q in G is the connected subgraph of G that contains all query
vertices, is most cohesive (i.e., with the largest possible minimum vertex degree), is
closest to Q, and is maximal. Here, the closeness of a subgraph is measured by the
largest value among the shortest distances between query vertices and other vertices in
the subgraph. Compared to [6], closest community only includes vertices that are close
and thus relevant to the query vertices Q. Compared to [14], closest community search
does not require end-users to input a distance threshold 7, but automatically finds the
subgraph that satisfies the smallest 7.

We show that the closest community of Q in G can be computed via a two-stage
approach: (1) stage-I computes the maximal connected subgraph g of G that contains
Q and is most cohesive, and (2) stage-II iteratively removes from gg the vertex that is
furthest to Q and subsequently also other vertices that violate the cohesiveness require-
ment due to the removal of their neighbors. Then, the last non-empty subgraph will
be the closest community of Q in G. We first propose baseline approaches for the two
stages that run in O(n + m) and O(ny X mg) time, respectively, where n (resp. ng) and
m (resp. mgp) are the number of vertices and edges in G (resp. go). Then, we develop
techniques to improve the time complexities of the two stages into O(ny + mgp) and
O(my + nglog ny), respectively. As a result, we have the IndexedLO algorithm whose
time complexity is O(mg + ng log ng); this is near-optimal in the worst case, since the
closest community of Q could be g itself whose size is O(ng + my). Nevertheless, in
practice the closest community of Q could be much smaller than gy, as it is expected
that the closest community of Q usually contains only a few vertices that are close to
Q. Thus, we further develop an algorithm CCS that has the same time complexity as
IndexedLO but performs much better in practice. Our contributions are as follows.

— We formulate the closest community search problem (Section 2), and develop a
Baseline approach (Section 4.1).

— We develop techniques to improve the time complexity and obtain the IndexedLO
algorithm that runs in O(mg + ngy log ny) time, which is near-optimal (Section 4.2).

— We design a CCS algorithm that has the same time complexity as IndexedLO but
runs faster in practice (Section 4.3).

— We conduct extensive empirical studies to demonstrate the efficiency and effective-
ness of our techniques (Section 5).

Proofs of all lemmas and theorems are omitted due to limit of space.

2 Preliminaries

For presentation simplicity, we focus our discussions on an undirected and unweighted
graph G = (V, E),? where V and E are the vertex set and edge set of G, respectively. We
use 7 and m to denote the number of vertices and the number of edges of G, respectively.
We denote the undirected edge between vertices u and v by (u, v). The set of neighbors
of a vertex u is denoted by N(u) = {v € V | (u,v) € E}, and the degree of u is denoted
by deg(u) = |N(u)|. A path between u and v is (vo,vy,...,v;) such that vp = u, v; = v
and (vi_1,v;) € E for 1 <i <I; the length of the path is [. The distance between « and v,
denoted d(u, v), is defined as the shortest length among all paths between u and v.

Fig. 1. An example graph

Given a set Q C V of query vertices, the query distance of a vertex v € V is
the maximum value among the distances between v and vertices of Q, i.e., 6(Q,v) =
max,ep 6(u, v). For example, for the graph in Figure 1 and Q = {q1, ¢2}, 6(Q,v1) = 1,
0(Q,v3) = 2, and 6(Q,v7) = 3. Then, the query distance of a subgraph containing
Q is the maximum query distance of its vertices. For example, the query distance of
the subgraph induced by vertices {qi, g2, V1, V2, ..., V9} is 3, the query distance of the
subgraph induced by vertices {qi, g2, V1, V2, ..., Vs} 1S 2, and the query distance of the
subgraph induced by vertices {g1, g2, Vi, 2} is 1.

Given a set Q of query vertices, we aim to find the closest community of Q in
G. Intuitively, (1) the community should be connected and contain all query vertices,
(2) the community should be cohesive such that the vertices are tightly connected, and
(3) the community should be close to the query vertices such that it is relevant to the
query. In this paper, for presentation simplicity we adopt the minimum vertex degree to
measure the cohesiveness of a subgraph, while our techniques can be easily extended
to other cohesiveness measures such as trussness [10] or edge connectivity [3]. We
formally define the closest community as follows.

3 The techniques we propose in this paper can be straightforwardly extended to directed graphs
and weighted graphs.

Definition 1. Given a graph G = (V, E) and a set of query vertices Q C V, the closest
community of Q in G is the connected subgraph g of G that contains Q and satisfies
the following three conditions.

1. Most Cohesive: the minimum vertex degree of g is the largest among all connected
subgraphs of G containing Q.

2. Closest: g has the smallest query distance among all subgraphs satisfying the above
conditions.

3. Maximal: g is maximal.

The closest community of Q = {qi,¢»} in Figure 1 is the subgraph induced by
{q1,q2,v1, vz}, where the minimum vertex degree is 2 and the query distance is 1.

Problem Statement. Given a graph G = (V, E) and a set of query vertices Q C V, we
study the problem of efficiently computing the closest community of Q in G.

We assume that the input graph G is connected, and a tie-breaker (e.g., vertex ID,
or personalized PageRank values [2]) is introduced such that all vertices have different
query distances. In the running examples, we use vertex ID for tie breaking.

3 General Idea

The general idea of our approaches is based on the concept of (k, d)-community.

Definition 2. Given a graph G = (V, E), a set of query vertices Q C V, and integers k
and d, the (k, d)-community of Q in G is the connected subgraph g of G that contains
0 and satisfies the following three conditions:

1. Cohesive: the minimum vertex degree of g is at least k.
2. Close: the query distance of g is at most d.
3. Maximal: g is maximal.

It is easy to see that the closest community of Q in G is the (k, d)-community of O
in G that exists and has the largest k and the smallest d. Note that, the (k, d)-community
of Q (if exists) is unique. Moreover, the (k, d)-communities of Q for different k values
and different d values form hierarchical structures. That is, for a fixed d, the (k;, d)-
community of Q is a subgraph of the (k;, d)-community of Q if k; > kp; for a fixed
k, the (k, d;)-community of Q is a subgraph of the (k, d»)-community of Q if d| < d>.
Thus, we can compute the closest community of Q by a two-stage framework.

Algorithm 1: TwoStageFramework

1 (kg,80) < Stage-1(G, 0);
2 return Stage-ll(go, O, kp);

Stage-I. In the first stage, we compute the (k, co)-community of Q in G that has the
largest k value. Denote this value of & as k¢, and denote the (kg, c0)-community of Q by
8o- Then, kg is the largest k value such that Q is in a connected component of the k-core
of G, and g is the connected component of the kp-core of G that contains Q. This is
because, for any k, the (k, co)-community of Q is the connected component of the k-core
that contains Q, where the k-core of a graph is the maximal subgraph g such that every

vertex in g has at least k neighbors in g. Note that, the k-core is unique. For the graph
in Figure 1, the entire graph is a 1-core, the subgraph induced by vertices {q1, g2, Vi,
V2,...,Vg} is a 2-core, the subgraph induced by vertices {g, v7, vs, v9} is a 3-core, and
there is no 4-core. Thus, for Q = {qi, ¢»} in Figure 1, kp = 2 and the (k¢, c0)-community
of Q is the subgraph induced by vertices {q1, g2, V1, V2, ..., Vo}.

Stage-II. In the second stage, we compute the (kg,d)-community of Q that exists
and has the smallest d value. As all vertices not in gy are guaranteed to be not in
the (kq,d)-community of Q for any d, we can focus our computations on go. Thus,
we iteratively reduce the graph g to obtain the (kp, d)-community of Q with the next
largest d value, and the final non-empty subgraph is the result. For example, the (g, o0)-
community of Q = {q,¢»} is the subgraph induced by vertices {q1, g2, Vi, V2,..., Vo}.
The next (kg, d)-communities that will be discovered are the subgraphs induced by ver-
tices {q1, g2, Vi, V2, .. ., V8, {91, G2, Vi, V2, . .., Ve}, {q1, @2, Vi, V2, v3, va), and {q1, g2, Vi, 2},
respectively, where the last one is the closest community of Q.

4 Our Approaches

We first propose a Baseline approach in Section 4.1, then improve its time complexity
in Section 4.2, and finally improve its practical performance in Section 4.3.

4.1 A Baseline Approach

Baseline Stage-I: Baseline-S1. A naive approach for stage-I in Algorithm 1 would be
iteratively computing the k-core of G for k values decreasing from n to 1, and stopping
immediately if Q is contained in a connected component of the computed k-core. How-
ever, the worst-case time complexity will be quadratic to the input graph size, which
is prohibitive for large graphs. To aim for a better time complexity, we propose to first
compute the core number for all vertices, where the core number of a vertex u, de-
noted core(u), is the largest k such that the k-core contains u. For the graph in Figure 1,
core(q;) = core(vy) = core(vg) = core(vy) = 3, core(vyg) = core(vy;) = 1, and the
core numbers of all other vertices are 2. Note that, the core number for all vertices in G
can be computed by the peeling algorithm in linear time [1]. Then, the k-core of G is
the subgraph induced by vertices whose core numbers are at least k [4]. Thus, we can
compute kg, the largest k value such that Q is in a connected component of the k-core
of G, by conducting a prioritized search from an arbitrary vertex of Q. That is, we grow
the connected component from an arbitrary vertex of Q, and each time we include, into
the connected component, the vertex that has the largest core number among all vertices
that are connected to (a vertex of) the connected component. Once the connected com-
ponent contains all vertices of Q, the minimum core number among all vertices of the
connected component then is ky. The pseudocode of our baseline approach for stage-I
is shown in Algorithm 2, denoted Baseline-S1.

Example 1. Consider Q = {qi, g»} and the graph in Figure 1, and assume we conduct
the prioritized search from ¢,. The algorithm will first visit the vertices {q;, v7, vg, Vo}
that have core numbers 3 and are connected to g;. Then, the algorithm will visit a subset

Algorithm 2: Baseline-S1

Input: Graph G = (V, E) and a set of query vertices Q C V
Output: ky and the (kg, 00)-community of Q

Run the peeling algorithm of [1] to compute the core number for all vertices of G;
Initialize a priority queue Q to contain an arbitrary vertex of Q;
kg « n;
while nort all vertices of Q have been visited do

u « pop the vertex with the maximum core number from Q;

Mark u as visited;

if core(u) < k¢ then ky < core(u) ;

for each neighbor v € N(u) do

L if v is not in Q and has not been visited then Push v into Q;

C X N N R W N =

10 gy < the connected component of the ky-core of G that contains Q;
11 return (kg, 80);

Algorithm 3: Baseline-S2
Input: A set of query vertices Q C V, an integer ko, and a graph g that contains Q and
has minimum vertex degree k¢
Output: Closest community of Q

1 Compute the query distance for all vertices of g¢;

2 i« 0;

3 while true do

4 u « the vertex in g; with the largest query distance;

5 gi+1 < the connected component of the ky-core of g;\{u} that contains Q;
6 if g;1; = 0 then break ;
7 else i—i+1;

8 return g;;

of the vertices {vy, v2, g2, V3, V4, V5, Vs} that have core numbers 2. Thus, kp = 2, and the
(kg, 00)-community of Q is the subgraph induced by vertices {g1, g2, v, V2, ..., Vo}.

The correctness of Baseline-S1 (Algorithm 2) can be verified from the defini-
tions of kg and (ko, co)-community, and the property that the k-core of G is the sub-
graph induced by vertices whose core numbers are at least k. The time complexity of
Baseline-S1 is proved by the theorem below.

Theorem 1. The time complexity of Baseline-S1 is O(n + m) where n and m are the
number of vertices and the number of edges of G, respectively.

Baseline Stage-II: Baseline-S2. In the second stage, we aim to iteratively reduce the
graph go, obtained from the first stage, to compute the (kg, d)-community of Q with the
next largest d value. Intuitively, the vertex that is furthest from the query vertices in gg
will not be in the next (kg, d)-community; thus, we can remove this vertex from go and
then reduce the resulting graph to the connected component of the kp-core that contains
Q. The final non-empty subgraph will be the closest community of Q.

The pseudocode of our baseline approach for stage-II is shown in Algorithm 3,
denoted Baseline-S2. Line 1 computes the query distance for all vertices of go. Then,
at Lines 4-5, we iteratively remove from g; the vertex that is furtherest from the query
vertices (i.e., has the largest query distance), and compute the connected component
gi+1 of the kp-core of the graph g;\{u} that contains Q. If there is no such g,y (i.e.,
gi+1 = 0), then g; is the closest community of Q and the algorithm terminates (Line 6).
Otherwise, we increase i and continue the next iteration (Line 7).

Example 2. Continue Example 1. kp = 2 and g is the subgraph induced by ver-
tices {q1,q2, Vi, V2,...,V9}. Vg is the vertex that has the largest query distance in go.
Then, g; is computed as the connected component of the ky-core of go\{ve} that con-
tains Q, which is the subgraph induced by vertices {q1, g2, V1, V2, ..., Vg}. vg is the ver-
tex that has the largest query distance in g;, and g, is computed as the subgraph in-
duced by vertices {q1, g2, V1, V2, .., Vs}. Similarly, g3 is the subgraph induced by ver-
tices {q1,q2,Vv1,Vv2,V3,Vv4}, and g4 is the subgraph induced by vertices {q, g2, vi, v2}.
Now, v, is the vertex that has the largest query distance in g4. After removing v, from
84, the kg-core of g4\{v,} does not contain all vertices of Q. Thus, the algorithm termi-
nates, and g4 is the closest community of Q.

The correctness of Baseline-S2 (Algorithm 3) is straightforward. The time com-
plexity of Baseline-S2 is proved by the theorem below.

Theorem 2. The time complexity of Baseline-S2 is O(ng X my) where ny and my are
the number of vertices and the number of edges of g, respectively.

As a result, the total time complexity of Baseline that first runs Baseline-S1 and
then runs Baseline-S2 is O(n + m + ny X mg). Note that, ny and my in the worst case can
be as large as n and m, respectively. Thus, the time complexity of Baseline is quadratic
to the input graph size in the worst case.

4.2 Improving the Baseline Approach

The Baseline approach proposed in Section 4.1 is too slow to process large graphs due
to its quadratic time complexity O(n + m + ny X mg). In this subsection, we propose
techniques to improve the time complexity for the two stages of Baseline.

LinearOrder-S2: Improving Baseline-S2. As shown by our empirical studies in Sec-
tion 5, Baseline-S2 takes more time than Baseline-S1 in Baseline. Thus, we first aim
to reduce the time complexity of stage-II of Baseline, i.e., Baseline-S2. The main cost
of Baseline-S2 comes from Line 5 of Algorithm 3 that in each iteration computes the
connected component of the ky-core of g;\{u} that contains Q. To avoid this quadratic
cost, we do not immediately search for the connected component of the kgy-core that
contains Q in each iteration. Instead, we separate the computation into two steps: step-1
builds the entire hierarchical structure for the (kg, d)-communities of Q for all differ-
ent d values by ignoring the connectedness requirement, and step-2 searches for the
connected (kg, d)-community of Q that has the smallest d value. This is based on the
fact that the (kg, di)-community of Q is a subgraph of the (k¢, d»)-community of Q if
dl < dz.

To build the hierarchical structure for the (kg, d)-communities of Q for all different
d values, we propose to compute a linear ordering for vertices of g; recall that g is the
(kg, o0)-community of Q. Specifically, we encode the hierarchical structure by a linear
ordering seq of vertices of gy and a subsequence targets of seq, such that there
is one-to-one correspondence between each (ko, d)-community for a different d value
and each suffix of seq that starts from a vertex of targets. Figure 2 shows such an
example. Note that, to be more precise, we here refer to a variant of (kg, d)-community
that does not necessarily to be connected, i.e., we remove the connected requirement
from Definition 2. To compute the linear ordering, we iteratively remove from g, the
vertex that has the largest query distance (and add it to the end of seq and targets),
and then subsequently remove from g all vertices that violate the kp-core requirement
(and add them to the end of seq).

seq |U9| U8| 1J7|U6|U5|U4|U3|U2|U1 |(]1 |Q2|

V2 *»l

targets . Vg Uy
Vg 8 |

Fig. 2. Hierarchical structure of (k¢, d)-communities for all different d values

Given seq and a vertex u € seq, let seq, denote the suffix of seq that starts from
u. Then, the closest community of Q will be the connected component, of the subgraph
induced by seq,,, containing O, where u is the right-most vertex of targets such that
Q is connected in the subgraph induced by seq,. For example, in Figure 2, the closest
community of Q = {g1, >} simply is the subgraph induced by seq,, = {v2,v1,q1,¢2}. It
is worth mentioning that, in general Q may be disconnected in the subgraph seq, where
v is the last vertex of targets. This is because we do not check the connectedness of
Q during the computation of seq and targets for the sake of time complexity. To
get the closest community of Q from seq and targets, we can use a disjoint-set data
structure [5] to incrementally maintain the connected components of the subgraphs of
go induced by vertices of suffices of seq.

The pseudocode of our improved algorithm for stage-II is shown in Algorithm 4,
denoted LinearOrder-S2. Lines 1-14 compute the hierarchical structure for the (ko, d)-
communities of Q for all different d values, and Lines 15-21 find the closest community
of O from the hierarchical structure. Note that, in order to efficient check whether Q is
entirely contained in a single set of the disjoint-set data structure S at Line 21, we
maintain a counter for each set recording the number of Q’s vertices that are in this set.
The counter can be maintained in constant time after each union operation of Line 20,
and Line 21 can be tested in constant time; we omit the details.

Example 3. Reconsider Example 2. ky = 2 and g is the subgraph induced by vertices
{q1,q2,v1,Vv2,...,v9}. Firstly, vy is the vertex with the largest query distance, so vg is
removed from the graph and is appended to both seq and targets; no other vertices
are removed as a result of the kp-core requirement. Secondly, vg is the vertex with the
largest query distance, and it is removed from the graph and is appended to both seq
and targets; subsequently, v; is also removed from the graph and is appended to seq
due to the violation of the kp-core requirement. So on so forth. The final results are
seq = (vg, Vg, V7, Vg, V5, V4, V3, V2, V1,41, q2) and targets = (vg, vg, Vg, V4, V2) as shown
in Figure 2. As the subgraph induced by seq,, = {v2,V1,¢1,¢>} is connected and con-

Algorithm 4: LinearOrder-S2

/* Compute the hierarchical structure for the (ky,d)-communities */
Compute the query distance for all vertices of g¢;
Sort vertices of g, in decreasing order with respect to their query distances;
seq < 0; targets « 0;
g’ « go; deg(u) « the degree of u in g’ for all vertices u € g’;
while g’ is not empty do
u « the vertex in g’ with the largest query distance;
if Q N seq = 0 then Append u to targets;
Q « {u}; /* Q is a queue */;
while Q # 0 do

Pop a vertex v from @, and append v to seq;

for each neighbor w of vin g’ do

deg(w) «— deg(w) — 1;
L if deg(w) = ko — 1 then Push winto Q;

TR - Y B NV SR

—_
W RN =S

o
-

Remove v from g’;

/% Search for the closest community of Q */
15 Initialize an empty disjoint-set data structure S;
16 for each vertex u € targets in the reverse order do

17 for each vertex v € seq between u (inclusive) and the next target vertex (exclusive) do
18 Add a singleton set for v into S;

19 for each neighbor w of v in g, do

20 L if w € Sthen UnionvandwinS;

21 if Q is entirely contained in a single set of S then break ;

22 return all vertices in the set of S that contains Q;

tains both ¢; and ¢, the closest community of Q = {qy, g} is the subgraph induced by
vertices seq,,.

Theorem 3. The time complexity of LinearOrder-S2 is O(mg + ng log np).

Indexed-S1: Improving Baseline-S1. By improving Baseline-S2 to LinearOrder-S2
which has a time complexity of O(mgy + nglogng), stage-I (i.e., Baseline-S1), which
processes the entire input graph and takes O(n + m) time, now becomes the bottleneck.
Thus, in the following we propose to utilize an index structure to improve Baseline-S1.

Baseline-S1 computes two things: kp and go where gy is the connected component
of the kp-core of G that contains Q. We first discuss how to efficiently get gy from G
based on an index structure if k¢ is known. Recall that, for any k, the k-core of G is
the subgraph induced by vertices whose core number are at least k. Thus, in the index
structure, we precompute and store the core number for all vertices of G, and moreover
we sort the neighbors of each vertex in the graph representation in decreasing order
with respect to their core numbers. Thus, to search for gy, we can conduct a pruned
breath-first search which starts from an arbitrary vertex of Q and visits only vertices
whose core numbers are at least k. It can be verified that, the vertices and edges visited
during the pruned breath-first search form the go.

(a) Weighted graph (b) Maximum spanning tree
Fig. 3. Weighted graph and maximum spanning tree

Secondly, to efficiently compute kg, we further maintain a maximum spanning tree

of the edge-weighted graph of G where the weight of edge (u, v) equals max{core(u), core(v)}.

For example, the weighted graph and the maximum spanning tree for the graph in Fig-
ure 1 are shown in Figure 3(a) and Figure 3(b), respectively. It can be verified by a
similar argument as in [3] that kp equals the minimum weight among all edges in the
paths between g; and ¢; for 2 < i < |Q| in the maximum spanning tree, where Q =
{q1,92, ..., g0} For example, the path between g and ¢ in Figure 3(b) is (g1, v3, v4, 2)
and k,, 4,) = 2. Note that, by further processing the maximum spanning tree using the
techniques in [3], kp can be computed in O(|Q|) time; we omit the details.

Algorithm 5: Indexed-S1

1 Compute k, based on the index J;

2 Conduct a pruned breadth-first search on G by starting from an arbitrary vertex of Q and
visiting only vertices whose core numbers are at least kg;

3 go < the subgraph of G induced by vertices visited at Line 2;

4 return (ko, g0);

The pseudocode of our index-based algorithm for stage-I is shown in Algorithm 5,
which is self-explanatory.

Theorem 4. The time complexity of Indexed-S1 is O(ng + my).

By invoking Indexed-S1 for stage-I and LinearOrder-S2 for stage-II, we get an
algorithm that computes the closest community of Q in O(mg + ng log ng) time; denote
this algorithm as IndexedLO.

4.3 The CCS Approach

The time complexity of IndexedLO is near-optimal in the worst case, because the clos-
est community of Q could be g itself whose size is O(ny + mg). Nevertheless, the
closest community of Q could be much smaller than g¢ in practice, as it is expected
that the closest community of Q usually contains only a few vertices that are close to
Q. Motivated by this, in this section we propose a CCS approach to improve the per-
formance of IndexedLO in practice. The general idea of CCS follows the framework
of [2]. That is, instead of first computing g9 — the connected component of the ko-
core of G that contains Q — and then shrinking g to obtain the closest community of
Q as shown in Algorithm 1, we start from working on a small subgraph containing Q
and then progressively expand it by including next few further away vertices. As the

vertices are added to the working subgraph in increasing order according their query
distances, once the working subgraph has a connected kp-core that contain all vertices
of Q, the closest community of Q can be computed from the working subgraph by
invoking LinearOrder-S2.

Algorithm 6: CCS

Input: Graph G = (V, E), a set of query vertex Q, and an index 7
Output: Closest community of Q

1 Compute k¢ based on the index 7;

2 hy « the subgraph of G induced by Q;

300,80

4 while true do

5 g’ « the connected component of the ky-core of h; that contains Q;

6 g « LinearOrder-S2(Q, kg, 8");

7 if g = 0 then

8 i—i+1;h « h_y;

9 while i; # G and the size of h; is less than twice of h;_, do

10 Get the next vertex u that has the smallest query distance;
L Add to h; the vertex u and its adjacent edges to existing vertices of 4;;

12 else break;

13 return g;

The pseudocode of CCS is shown in Algorithm 6. We first compute k, based on
the index 7 (Line 1), and initialize the working subgraph kg to be the subgraph of G
induced by Q (Line 2). Then, we go to iterations (Lines 5-12). In each iteration, we
try to compute the closest community of Q in A; by invoking LinearOrder-S2 on the
connected component of the kp-core of h; that contains Q (Lines 5-6). Let g be the
result. If g is not empty, then it is guaranteed to be the closest community of Q in G
(Line 12). Otherwise, the current working subgraph %; does not include all vertices of
the closest community of O, and we need to grow the working subgraph (Lines 8—11).
To grow the working subgraph, we (1) include vertices in increasing order according to
their query distances, and (2) grow the working subgraph exponentially at a rate of two.
Here, the size of a graph is measured by the summation of its number of vertices and
its number of edges. We will prove shortly that the time complexity of this strategy will
be O(my + nglog ny) in the worst case. Note that, if we grow the working subgraph at
the rate of adding one vertex, then it is easy to see that the time complexity would be
quadratic (i.e., O(ng X my)).

Example 4. Reconsider Q = {q;, ¢»} and the graph in Figure 1, and recall that the ver-
tices in increasing query distance order are qi,g2,V1,V2,...,Vi1. kg = 2. The initial
working subgraph hg consists of vertices ¢; and ¢, and is of size 2, as shown in Fig-
ure 4. The second working subgraph A, is of size 5, as shown in Figure 4. #; does not
have a 2-core, and we continue growing the working subgraph. The third working sub-
graph 5, is the subgraph induced by vertices {g1, g2, v1, v2, v3}, and g is computed as the
subgraph induced vertices {q1, g2, Vi, v2} which is the closest community of Q. Thus,
the algorithm terminates and reports g as the closest community of Q.

Fig. 4. Running example of CCS
Although CCS may need to process many subgraphs of gy, we prove in the theorem
below that its worst-case time complexity is O(mg + ng log ng).

Theorem 5. The worst-case time complexity of CCS is O(mg + ng log n).

5 Experiments

In this section, we conduct extensive empirical studies to evaluate the performance of
our algorithms on real-world graphs. We evaluate the following four algorithms.

— Baseline, which invokes Baseline-S1 (Algorithm 2) for stage-I and Baseline-S2
(Algorithm 3) for stage-II.
— LinearOrder, which invokes Baseline-S1 (Algorithm 2) for stage-I and LinearOrder-S2
(Algorithm 4) for stage-II.
— IndexedLO, which invokes Indexed-S1 (Algorithm 5) for stage-I and LinearOrder-S2
(Algorithm 4) for stage-II.
— CCS (Algorithm 6).
All the algorithms are implemented in C++.
Datasets. We use six real graphs that are downloaded from the Stanford Network Anal-

ysis Platform* in our evaluation. Statics of these graphs are shown in Table 1, where
core,,,, denotes the maximum core number among vertices in a graph.

Table 1. Statistics of Real Graphs

Graphs n m|core,,
Email 36,692 183,831 43
Amazon 334,863 925,872 6
DBLP 317,080 1,049,866| 113
Youtube |1,134,890| 2,987,624| 51
LiveJournal|3,997,962| 34,681,189 360
Orkut [3,072,441|117,185,083| 253

Setting. We compare the performance of the algorithms by measuring their query pro-
cessing time. The reported time includes all the time that is spent in computing the
closest community for a query, except the I/O time for reading the graph from disk to
main memory. All experiments are conducted on a machine with 2.9 GHz Intel Core i7
CPU and 16GB main memory.

4 http://snap.stanford.edu/

5.1 Experimental Results

In this testing, the query vertices for a graph are randomly selected from its 5-core.
The total running time of the four algorithms on the six graphs is shown in Figure 5.
We can see that the algorithms in sorted order from slowest to fastest are Baseline,
LinearOrder, IndexedLO, and CCS. This results align with our theoretical analysis.
That is, the time complexities of these four algorithms are O(n + m + ng X mgp), O(n+m+
myg + ng log ng), O(mg + ng log ng), and O(mg + ng log ny), respectively, where ng usually
is much smaller than 7, and mg usually is much smaller than m. Baseline cannot finish
with 10 minutes, except for the two small graphs Email and Amazon. The improve-
ment of CCS over LinearOrder is up-to 607 times. The improvement of CCS over
IndexedLO is up-to 148 times, despite having the same worst-case time complexity.

IndexedLO

Baseline # LinearOrder

6x10°
10°

10%

10° £
102

10"

Processing Time (ms)

10°

Email Amazon DBLP Youtube LiveJournal Orkut

Fig. 5. Total running time of the algorithms (ms)

To get a more detailed analysis of the algorithms, we separate the total running time
into the running time of stage-I and the running time of stage-II, for each algorithm.
The results are shown in Table 2. Recall that the algorithm for stage-I of LinearOrder is
the same as that of Baseline, and the algorithm for stage-1I of IndexedLO is the same
as that of LinearOrder. We can see that Indexed-S1 (used in stage-I of IndexedLO)
significantly improves upon Baseline-S1 (used in stage-I of Baseline and LinearOrder)
as a result of the index-based approach, and the improvement is more than one order of
magnitude. Regarding stage-II, we can see that LinearOrder-S2 (used in LinearOrder
and IndexedLO) significantly improves upon Baseline-S2 (used in Baseline) due to
the improved time complexity from quadratic (specifically, O(ny X mp)) to near-linear
(specifically, O(mg + ng log ngp)).

Table 2. Stage-I and stage-II time of the algorithms (ms)

Baseline LinearOrder IndexedLO | CCS
Stage-1| Stage-II |Stage-1|Stage-II| Stage-I |Stage-II| Total
Email 56.01 | 56,322 | 56.10 | 12.66 | 7.48 | 12.22 | 6.31
Amazon [445.14|104,581(445.03| 68.52 | 35.89 | 68.24 | 12.85
DBLP |493.02|>10 min|{493.95| 120.84 | 59.5 | 120.77 | 14.00
Youtube | 1,385 [>10min| 1,385 | 291 |128.49| 291 |74.07
LiveJournal 19,343 |>10 min| 19,343 | 4,178 |2374.39| 4,178 |226.74
Orkut [58,815|>10 min|58,815| 13,620 {4295.06| 13,620 |176.63

Graphs

Now, let’s compare the two stages within each algorithm. We can see that for
Baseline, stage-1I (Baseline-S2 with time complexity O(ny X mjg)) dominates stage-
I (Baseline-S1 with time complexity O(n +m)) due to the quadratic time complexity of
stage-1I, and stage-II takes more than 10 minutes for graphs DBLP, Youtube, LiveJour-
nal, and Orkut. This motivates us to improve Baseline-S2 to LinearOrder-S2 that runs

in O(mg + ng log ng) time, which leads to our second algorithm LinearOrder. Due to the
improved time complexity of LinearOrder-S2, we can see that stage-I of LinearOrder
(i.e., Baseline-S1) now dominates due to processing the entire input graph. This moti-
vates us to utilize an index structure that is built offline to improve the online query pro-
cessing time, which results in our third algorithm IndexedLO that has a time complexity
of O(mg + ng log ny). The time complexity of IndexedLO is near-linear to the size of the
initial graph go, which increases along with the input graph size. Thus, the processing
time of IndexedLO increases significantly for large graphs (e.g., Orkut), which moti-
vates us to design the CCS algorithm. We can see that CCS significantly outperforms
both stages of IndexedLO, and the processing time of CCS on large graphs increases
much slower than that of IndexedLO.

@G, 3 G, 3
E£107 ! L ! T3 E107 ¢ LinearOrder-S2 —&—— 7
2 PO = = = H 1 o F CCS - * -]
= 1 E []
'>102 - o @---©---0---© 4 'G10Z a—" 3
= 3= E E
w] w £]
B F Baseline-S1 —3— B 8 r 1
810! b Indexed-S1 - © -, L 4 810l b K- - oH- - o= - -K- - - K
a Q= 1 2 3 4 5 a Q= 1 2 3 4 5

(a) Stage-I time (vary |Q|) (b) Stage-II time (vary |Q])

Fig. 6. DBLP with distance 1 among query vertices

@G, 3 G, 3
E107 g ! ! ! 3 E107 ¢ LinearGrder-S2 —&a—— }
@ P —= =H—F—F 7 @ F CCS - 3 -
'SP E oo - @@ -ie- -0 4 107 A—a——Aa——S—=5
_E = .S E =
w] w2 £ |
B Baseline-S1 —— E < r 1
810! b Indexed-S1 - © -, L 4 810! B M- - oH- - -K- - -K- - - K
a Q= 1 2 3 4 5 a Q= 1 2 3 4 5

(a) Stage-I time (vary |Q|) (b) Stage-II time (vary |Q])

Fig. 7. DBLP with distance 2 among query vertices

@5, 3 G, 3
E107 g ! ! L T3 E107 ¢ LinearGrder-S2 —&a— }
@ F —8B8—& = =1 3 @ F CCS - 3¢ - 1
531027(3__-G>-——G>———€>———€>fE o102 b a—= E
_E = .E E =
w] w2 £]
8 Baseline-S1 —— 9 8 r o - 1
§1O1 £ Indexed-S1 - © - | LS §101 L - | ik Salialialt, alialiallt S
a Q= 1 2 3 4 5 a Q= 1 2 3 4 5

(a) Stage-I time (vary |Q|) (b) Stage-II time (vary |Q])

Fig. 8. DBLP with distance 3 among query vertices

Vary Query Size. In this testing, we evaluate the impact of the number of query
vertices on the performance of the algorithms. In particular, we separately consider
the algorithms for stage-I and for stage-II. For stage-I, we compare Indexed-S1 with
Baseline-S1, and for stage-1I, we compare CCS with LinearOrder-S2. Note that, (1) we
do not include Baseline-S2 because it is too slow as shown in Table 2, and (2) we
compare CCS with LinearOrder-S2 although the reported time of CCS is its total pro-
cessing time. We vary the number of query vertices |Q| from 1 to 5. For each query
size, we generate three sets of queries such that the distances among the query vertices
are 1, 2, and 3, respectively. The results on DBLP are shown in Figure 6, Figure 7 and
Figure 8. We can see that the processing time for both stages increases slightly when
the number of query vertices increases. Nevertheless, this is not significant, and CCS
still significantly outperforms the other algorithms.

Yonina C. \/\ad|slav

Michael €=
Azita Emami-Ney " n Yoo
Thomas SUW/ »omberg
John \

Fig. 9. Closest community search for “Terence Tao”

Case Study. We conduct a case study for the closest community search on the DBLP
coauthor graph, which is built based on the dataset BigDND: Big Dynamic Network
Data® extracted from DBLP. The dataset includes all author publication information
stored in DBLP up-to October 2014. In our coauthor graph, each vertex represents one
author, and there is an edge between u and v if they have published at least 3 papers
together. The final coauthor graph has 367,202 vertices and 821,205 edges.

In the case study, we search for the closest community of “Terence Tao”, an Australian-
American mathematician who is one of the Fields Medal recipient in 2006. The result
is shown in Figure 9, which has 18 authors. Terence Tao has published more than 3 pa-
pers together with Van H. Vu and Emmanuel J. Candes. The most cited paper of Tao’s is
Robust uncertainty principles: exact signal reconstruction from highly incomplete fre-
quency information, which is a collaborated work with Emmanuel J. Candes and Justin
Romberg. Emmanuel J. Candes also has over 80 papers recorded in our dataset, so there
are a lot of scholars that coauthor with him as well, as shown in Figure 9, there are 13
nodes that represent his coauthors.

6 Related Works

Community Search. Given a set of one or more query vertices (, community search
aims to find cohesive subgraphs that contain Q. In the literature, the cohesiveness of a
subgraph is usually measured by minimum degree (aka k-core) [6, 14], minimum num-
ber of triangles each edge participates in (aka k-truss) [10], or edge connectivity [3].
In this paper, we use the minimum degree-based cohesiveness measure in our closest
community search problem. The technique of [6] cannot be used for closest commu-
nity search as it inherently ignores the distance between vertices. Although the tech-
nique of [14] can be extended to compute the closest community which corresponds to
our Baseline approach, it is infeasible for large graphs as shown by our experiments.
On the other hand, the closest community search problem is recently studied in [10]
which uses the trussness-based cohesiveness measure, the general idea of the algorithm
in [10] is similar to our combination of Indexed-S1 and Baseline-S2. We have shown
that Baseline-S2 cannot process large graphs due to its quadratic time complexity. In

3 http://projects.csail.mit.edu/dnd/

order to process large graphs, heuristic techniques (such as bulk deletion and local ex-
ploration) are used in [10] which destroys the exactness; that is, the computed result
may be not the closest community. It will be an interesting future work to extend our
implementation to handle the query of [10].

Influential Community Search. The problem of influential community search is re-
cently investigated in [2, 12]. Influential community search does not have query ver-
tices but considers a vertex-weighted input graph, and aims to find top subgraphs that
have minimum vertex degree k and have largest minimum vertex weight. Due to not
having query vertices and not aiming for most cohesive subgraph, the algorithms in [2,
12] cannot be used to process closest community search queries.

7 Conclusion

In this paper, we formulated the closest community search problem based on the min-
imum degree-based cohesiveness measure. We firstly developed a Baseline algorithm,
and then progressively improved it to IndexedLO, and CCS. We theoretically analyzed
their time complexities, and conducted extensive empirical studies to evaluate the effi-
ciency and effectiveness of the algorithms.

References

1. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR
¢s.DS/0310049 (2003)
2. Bi, F, Chang, L., Lin, X., Zhang, W.: An optimal and progressive approach to online search
of top-k influential communities. PVLDB 11(9), 1056-1068 (2018)
3. Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-based optimal algorithms for com-
puting steiner components with maximum connectivity. In: Proc. of SIGMOD’ 15 (2015)
4. Chang, L., Qin, L.: Cohesive Subgraph Computation over Large Sparse Graphs. Springer
Series in the Data Sciences (2018)
5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edn. (2009)
6. Cui, W, Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In:
Proc. of SIGMOD’ 14. pp. 991-1002 (2014)
7. Fortunato, S.: Community detection in graphs. Physics reports 486(3-5), 75-174 (2010)
8. Guimera, R., Nunes Amaral, L.A.: Functional cartography of complex metabolic networks.
Nature 433(7028), 895-900 (2 2005)
9. Huang, X., Lakshmanan, L.V.S., Xu, J.: Community search over big graphs: Models, algo-
rithms, and opportunities. In: Proc. of ICDE’17. pp. 1451-1454 (2017)
10. Huang, X., Lakshmanan, L.V.S., Yu, J.X., Cheng, H.: Approximate closest community
search in networks. Proc. VLDB Endow. 9(4), 276287 (Dec 2015)
11. Li, J., Wang, X., Deng, K., Yang, X., Sellis, T., Yu, J.X.: Most Influential Community Search
over Large Social Networks. In: Proc. of ICDE’17. pp. 871-882 (2017)
12. Li, R.H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. Pro-
ceedings of the VLDB Endowment 8(5), 509-520 (1 2015)
13. Robinson, 1., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, Inc. (2013)
14. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail
party. In: Proc. of KDD’10. p. 939 (2010)

