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ABSTRACT
This paper studies the problem of MCC-Sparse, Maximum Clique

Computation over large real-world graphs that are usually Sparse.
In the literature, MCC-Sparse has been studied separately and less

extensively than its dense counterpart MCC-Dense, and advanced
algorithmic techniques that are developed for MCC-Dense have not

been utilized in the existing MCC-Sparse solvers. In this paper, we

design an algorithm MC-BRB which transforms an instance of

MCC-Sparse to instances of k-clique finding over dense subgraphs

(KCF-Dense) that can be computed by the existing MCC-Dense solvers.
To further improve the efficiency, we then develop a new branch-
reduce-&-bound framework for KCF-Dense by proposing light-weight
reducing techniques and leveraging the existing advanced branch-

ing and bounding techniques of MCC-Dense solvers. In addition,

we also design an ego-centric algorithm MC-EGO for heuristically

computing a near-maximum clique in near-linear time. We conduct

extensive empirical studies on large real graphs and demonstrate

the efficiency and effectiveness of our techniques.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Infor-
mation systems → Data mining.
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1 INTRODUCTION
Graph model has been widely used to represent the relationships

among entities in a wide spectrum of applications such as social

networks, collaboration networks, communication networks and

biological networks. As a result, we are nowadays facing a tremen-

dous amount of large graphs that are globally sparse but locally
dense [2], and it is of great importance to identify the locally dense

subgraphs. In this paper, we study the problem of Maximum Clique
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Computation (MCC) over large sparse graphs, a fundamental prob-

lem in graph analytics. Formally speaking, a subset C of vertices in

a graph G is a clique if there is an edge in G between every pair of

vertices of C , and its size is measured by its number of vertices. A

clique is maximum if its size is the largest among all cliques of G.

Applications. The MCC problem, besides being an important and

interesting scientific problem itself, has many applications in graph-

based data analytics [15, 17, 18]. For example, large cliques can be

used as signals of rare or anomaly events such as terrorist recruit-

ment [1] or web spam [12]. In bioinformatics and molecular biology,

motif discovery requires to find large co-expression groups (i.e.,

cliques) in gene co-expression networks [25]. Finding large cliques

can also accelerate other graph analysis tasks, e.g., subgraph enu-

meration which aims to enumerate all subgraphs of a large graph

G that match an unlabeled query pattern q [10, 20]. It is easy to

see that for a clique C of G, any subset with |V (q)| vertices of C
matches q regardless of q’s structure.

On the other hand, computing the exact maximum clique can

be used to evaluate the effectiveness of heuristic maximum clique

computation algorithms, and the maximum clique size of G has

an indication on the hardness of some analysis tasks on G. For
example, as the maximum clique size of the graph uk-2002 is 944,
subgraph enumeration over uk-2002 for any query with 6 vertices

would have Ω(1018) results. This partially explains why the existing
works only evaluate queries with up-to 5 vertices, e.g., [20].
Existing Algorithms. The MCC problem is among Karp’s original

21 NP-hard problems [9]. The existing algorithms are as follows.

(1) Heuristic Algorithms. It is shown in [8] that approximately com-

puting a maximum clique within a factor of n1−ϵ for any constant

0 < ϵ < 1 is NP-hard. As a result, heuristic techniques have been in-

vestigated for finding a large clique in practice [17, 18]. The general

idea is to grow an initially empty clique C , by greedily moving ver-

tices from a set R of candidate vertices to C . Here, R is maintained

to be the set of vertices that are adjacent to all vertices of C , and is

initialized by the vertices V of G. Maximum degree-based heuris-

tic [17] and degeneracy order-based heuristic [18] greedily move to

C the vertex of R that, respectively, has the maximum degree and

has the highest rank according to the degeneracy ordering.

(2) Exact Algorithms. On the other hand, designing exact algorithms

has also been extensively studied, e.g., [3, 13, 14, 16–19, 21, 22,
24]. All these algorithms follow the branch-&-bound framework. It

grows C and maintains R in a similar way to the above heuristic

algorithms. However, it exhaustively tries moving each vertex of R
to C , and generates a new branch (i.e., a new instance C ′ and R′)
for each such movement. Upper bounds are computed for branches

such that a branch is pruned if its upper bound is not better than the

currently found largest clique. In the literature, various branching

and bounding techniques have been developed [13, 14, 21, 22].
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Motivation. The existing solutions for exact maximum clique com-

putation (MCC) are divided into two groups:

• solvers for MCC-Dense (i.e., MCC over Dense graphs) [3, 13,

14, 16, 21, 22, 24] that specifically handle dense graphs by

relying on the adjacency matrix graph representation;
• solvers for MCC-Sparse (i.e., MCC over Sparse graphs) [17–19]
that handle large sparse graphs by using the adjacency list
graph representation.

While MCC-Dense has been extensively andwell studied, MCC-Sparse
has been less-well studied. The existing MCC-Dense solvers cannot

be directly applied to process large sparse graphs with millions

of vertices due to the memory explosion of the adjacency matrix

graph representation. However, advanced algorithmic techniques

— such as graph recoloring [21, 22] and incremental MaxSAT rea-

soning [13, 14] — have been developed for MCC-Dense, whereas
the existing MCC-Sparse solvers use only simple algorithmic tech-

niques but resort to advanced programming techniques such as

multi-core [18] and bit-parallel [19]. Two natural questions arise:

Question-I: is it possible to extend the existing MCC-Dense
solvers to solve the problem of MCC-Sparse?

Question-II: if yes, then is the direct extension efficient?

Our Contributions. In this paper, we answer the above questions

by building a bridge between MCC-Sparse and MCC-Dense. Our
main contributions are as follows. We omit the proofs of all theo-

rems and lemmas due to space limitation.

(1) Transform MCC-Sparse to KCF-Dense (Section 3). We design

an exact algorithm MC-BRB for MCC-Sparse by transforming an

instance of MCC-Sparse to instances of k-Clique Finding (KCF), each
working on an ego-network. We prove that the maximum vertex

number of the ego-networks is bounded by the degeneracy δ (G)

with δ (G) ≤
⌈√

2m + n
⌉
for a graph G with n vertices andm edges.

We show empirically that the ego-networks are dense. Thus, the

input graphs to our KCF problem are small and dense. That is, we

transform MCC-Sparse to KCF-Dense (i.e., KCF over Dense graphs)

which can be computed by the existing MCC-Dense solvers.

(2) A branch-reduce-&-bound Framework for KCF-Dense (Section 4).

To further improve the efficiency, we develop a branch-reduce-&-

bound framework for KCF-Dense, by introducing reducing tech-

niques. Given an instance of KCF-Dense that consists of a dense

graph д and an integer k , we propose reduction rules to reduce the

size of д while preserving the existence of a k-clique. Specifically,
applying the reduction rules outputs a graph д′ and an integer k ′

such that |V (д′)| ≤ |V (д)|, k ′ ≤ k , and д contains a k-clique if

and only if д′ contains a k ′-clique. We also propose light-weight

techniques to iteratively and exhaustively apply all our reduction

rules to reduce д as much as possible, in amortized linear time.
(3) An Efficient Heuristic AlgorithmMC-EGO (Section 5). To facili-

tate applications where finding a large clique suffices, we propose an

efficient heuristic algorithmMC-EGO for finding a near-maximum

clique in O(δ (G) ·m) time. This time complexity is near-linear, since

δ (G) is theoretically bounded by

⌈√
2m + n

⌉
and usually is at most

thousands for real graphs as shown by our experiments.

(4) Extensive Empirical Studies (Section 6). We conduct extensive

empirical studies on large real graphs to evaluate the efficiency

and effectiveness of our algorithms. The results demonstrate that

our exact algorithmMC-BRB outperforms the existing solutions of

MCC-Sparse by up-to several orders of magnitude, and the clique

reported by our heuristic algorithmMC-EGO either is certified to be

or is very close to maximum.Most notably, for graphs twitter-mpi
and tech-p2p,MC-BRB computes the maximum clique within five

minutes while all existing algorithms take more than five hours.

Related Works. The related works are categorized as follows.

(1) Maximum Clique Computation. Besides the above mentioned

heuristic algorithms and exact algorithms, a Monte Carlo algorithm

RMC is recently proposed in [15]. Other techniques, such as paral-

lelization [18] and distributed computing [24], are also investigated

in the literature to speed up the computation. In this paper, we

focus on single thread algorithms.

(2) Maximal Clique Enumeration. The problem of enumerating all

maximal cliques in a graph has also been extensively studied (e.g.,
see [7, 23]), with the state-of-the-art algorithm running in O(d(n −

d)3d/3) time where d = δ (G) is the degenerarcy of G. Although
the largest one among all maximal cliques is the maximum clique,

these algorithms are not efficient and not suitable for maximum

clique computation due to lack of pruning techniques.

(3) Maximum Independent Set/Minimum Vertex Cover Computation.
The problem of computing maximum independent set or equiv-

alently computing minimum vertex cover is also studied in the

literature (e.g., see [4, 11]). Computing maximum independent set

and computing maximum clique are theoretically equivalent; that

is,C ⊆ V is a maximum clique ofG if and only if it is a maximum in-

dependent set of its complement graphG = (V ,E), where (u,v) ∈ E
if and only if (u,v) < E. Nevertheless, these techniques cannot be
applied to our problem as the complement of a large sparse graph

has an extremely large number of (i.e., Ω(n2)) edges.

2 PRELIMINARIES
In this paper, we focus on an unweighted undirected graph G =
(V ,E), where V is the set of vertices and E is the set of edges. We

denote the number of vertices and the number of undirected edges

inG by n andm, respectively. Let (u,v) ∈ E denote an edge between

u andv ;u (resp.v) is said to be adjacent to and a neighbor ofv (resp.

u). The set of neighbors of u in G is NG (u) = {v ∈ V | (u,v) ∈ E},
and the degree of u in G is dG (u) = |NG (u)|. Given a vertex subset

S of G , we use G[S] to denote the subgraph of G induced by S ; that
is, G[S] = (S, {(u,v) ∈ E | u,v ∈ S}). For ease of presentation, we
simply refer to an unweighted undirected graph as a graph, and we

abbreviate NG (u) and dG (u) as N (u) and d(u) when the graph in

consideration isG . For an arbitrary given graph д, we denote the set
of vertices and the set of edges of д by V (д) and E(д), respectively.

A vertex subset C ⊆ V of a graph G = (V ,E) induces a clique if
every pair of vertices of C is connected by an edge in G; we call
the vertex set C a clique. The size of a clique C is measured by its

number of vertices, denoted |C |. A cliqueC ofG is amaximal clique
if every proper superset ofC inG is not a clique. A cliqueC ofG is a

maximum clique if its size is the largest among all (maximal) cliques

of G, and this size is called the clique number of G, denoted ω(G).
For example, consider the graph in Figure 1. {v1,v2,v3} is a clique
of size 3, while {v5,v6,v7,v8} is a maximum clique and the clique

number of the graph is 4. Note that, the maximum clique may be

not unique. For example, if we add an edge betweenv3 andv4, then
{v1,v2,v3,v4} is also a maximum clique besides {v5,v6,v7,v8}.
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Figure 1: An example graph

Problem Statement. In this paper, we study the problem of maxi-

mum clique computation over a large sparse graph G = (V ,E), i.e.,
MCC-Sparse, which aims to compute a maximum clique in G.

We consider a graph to be sparse if its density (i.e., 2m
n(n−1) ) is

below 0.1, which is the typical case for graphs with millions of

vertices. For example, for the density of a 1-million-vertex graph to

be over 0.1, the graph needs to have over 50 billion edges.

2.1 Core Number, Coloring, and Upper Bounds
We review three upper bounds for maximum clique computation.

Degree-based Upper Bound. The first upper bound is based on

the degree information, as follows.

Lemma 2.1: [18] For a graphG and a vertex u inG , the size of every
clique in G containing u is no larger than d(u) + 1.

It follows from Lemma 2.1 that ω(G) ≤ maxu ∈V d(u) + 1.

Core Number-based Upper Bound. The second upper bound is

based on the concept of core number. Given a graph G, the core
number of a vertex u, denoted core(u), is the largest k such that

u is in the k-core of G, where the k-core is the maximal subgraph

whose minimum degree is at least k . The maximum core number of

all vertices ofG , denoted δ (G), is known as the degeneracy ofG [7].

For the graph in Figure 1, the entire graph is a 1-core, the subgraph

induced by vertices {v1, . . . ,v8} is a 3-core, the core numbers of

all vertices are shown in the second row of Table 1, and δ (G) = 3.

The core number-based upper bound is defined as follows.

Lemma 2.2: [18] For a graphG and a vertex u inG , the size of every
clique in G containing u is no larger than core(u) + 1.

It follows from Lemma 2.2 that ω(G) ≤ maxu ∈V core(u) + 1 =
δ (G) + 1. As core(u) ≤ d(u) holds for every vertex u ∈ V , the
core number-based upper bound is tighter than the degree-based

upper bound. Note that, the core number for all vertices in G can

be efficiently computed, e.g., in O(m) total time [5].

Graph Coloring-based Upper Bound. The third upper bound is

based on the concept of graph coloring. Given a graph G = (V ,E),
a coloring of G is to assign a color number, denoted color(u), to
each vertex u ∈ V such that no two adjacent vertices have the same

color (i.e., color(u) , color(v),∀(u,v) ∈ E). For example, the last

row of Table 1 shows a feasible coloring of the graph in Figure 1.

Lemma 2.3: [21] For a graph G and a subset S of vertices of G, the
maximum clique size of the subgraph G[S] is no larger than the
number of distinct colors of S , denoted UniqColors(S, color(·)).

It follows from Lemma 2.3 that ω(G) ≤ UniqColors(V , color(·)).
Thus, the fewer the number of distinct colors used in a graph color-

ing, the tighter the upper bound estimation. However, it is NP-hard
to compute a graph coloring with the minimum number of distinct

colors [9]. Thus, heuristics are usually adopted to color the vertices

Table 1: Core numbers and a graph coloring
vertex v10 v9 v8 v7 v6 v5 v4 v3 v2 v1
core(·) 1 2 3 3 3 3 3 3 3 3

color(·) 1 0 3 2 1 0 2 2 1 0

of a graph. One of the most widely used heuristics [21] is a greedy

approach based on the degeneracy ordering of the vertices.

Definition 2.1:[5] A permutation (v1,v2, . . . ,vn ) of all vertices of G
is a degeneracy ordering if every vertexvi has the smallest degree

in the subgraph of G induced by {vi ,vi+1, . . . ,vn }.

Given a degeneracy ordering of all vertices ofG , colors are greed-
ily assigned to vertices in the reverse order: each vertex is assigned

the smallest color that none of its neighbors have taken. It is im-

mediate that the number of distinct colors is upper bounded by

δ (G) + 1. Thus, the coloring-based upper bound is tighter than the

core number-based upper bound. For example, for the graph in Fig-

ure 1, the degeneracy ordering of the vertices is shown in the first

row of Table 1, and the graph coloring based on this degeneracy

ordering is shown in the last row. As a degeneracy ordering of the

vertices in G can be computed in O(m) time [5], the degeneracy

ordering-based graph coloring can be conducted in O(m) time.

3 TRANSFORM MCC-SPARSE TO KCF-DENSE
In this section, we propose techniques to transform the problem of

MCC-Sparse to the problem of k-clique finding (KCF). The main idea

is based on the following two lemmas; the proofs of all theorems

and lemmas are omitted from the paper due to space limitation.

Lemma 3.1: Given an arbitrary total ordering ofV , we have ω(G) =
maxu ∈V ω

(
G[N+(u)]

)
+ 1, whereG[N+(u)] denotes the subgraph of

G induced by the set N+(u) of higher-ranked neighbors ofu according
to the total ordering.

Lemma 3.2: Given an arbitrary total ordering (v1,v2, . . . ,vn ) of V ,
we have ω

(
G[N+(vi )]

)
≤ max

n
j=i+1 ω

(
G[N+(vj )]

)
+ 1,∀1 ≤ i < n.

We call G[N+(vi )] an ego-network of G regarding vertex vi ;
note that, all vertices of G[N+(vi )] are connected to vi . Figure 2
shows the ego-networksG[N+(v3)] andG[N

+(v8)] for the graph in
Figure 1 and the vertex ID-based total ordering (v10,v9, · · · ,v2,v1).

v7
v3 G[N+(v3)] v8

G[N+(v8)]

v1

v2

v5
v6

Figure 2: Ego-networks G[N+(v3)] and G[N+(v8)]

Following Lemmas 3.1 and 3.2, we propose to process vertices

in the reverse order according to a total ordering (v1,v2, . . . ,vn )
of vertices of G. When processing vertex vi , what we need to do

is to find a clique of size k (aka, k-clique), if one exists, in the ego-

network G[N+(vi )]; here, k = max
n
j=i+1 ω

(
G[N+(vj )]

)
+ 1 is the

size of the currently found largest clique. If G[N+(vi )] contains a
k-clique C , then {vi } ∪C is a (k + 1)-clique ofG and it updates the

currently found largest clique. Finally, the stored largest clique is

a maximum clique of G when the algorithm terminates. Thus, our
main problem for computing a maximum clique over a large sparse
graph G becomes k-clique finding (KCF) in the n ego-networks of
G. For example, when processing the ego-network G[N+(v8)], we
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should have found the 3-clique {v1,v2,v3}, thus we will aim to find

a 3-clique in G[N+(v8)]. As {v5,v6,v7} is a 3-clique in G[N
+(v8)],

we obtain the 4-clique {v5,v6,v7,v8}.

Make Ego-networks Small and Dense. The above general idea
applies to any total ordering ofV . However, the number of vertices

in the ego-networksG[N+(vi )] can dramatically differ for different

total orderings ofV . We prove by the following two lemmas that the

degeneracy ordering (see Definition 2.1) minimizes the maximum

number of vertices in the n ego-networks; given a degeneracy

ordering, we say a vertex ranks higher if it appears later in the

degeneracy ordering.

Lemma 3.3: If we use the degeneracy ordering of V , then we have
maxu ∈V

��N+(u)�� ≤ δ (G) ≤ min{dmax ,
⌈√

2m + n
⌉
}, where dmax is

the maximum vertex degree of G.

Lemma 3.4: For any total ordering ofV , there is a vertex u ∈ V such
that |N+(u)| ≥ δ (G).

Thus, we use the degeneracy ordering of vertices to construct

the ego-networks in this paper. Our empirical studies (see Section 6)

show that the ego-networks constructed for real graphs are dense.

As a result, the input graphs to our KCF problem are small and dense,
and we have transformed MCC-Sparse to KCF-Dense.

TheMC-BRBAlgorithm. Based on the above discussions, we pro-

pose an exact algorithmMC-BRB for MCC-Sparse. The pseudocode
is shown in Algorithm 1. We first compute a heuristic initial clique

C∗, a degeneracy ordering Dorder(·), a coloring color(·), and core

numbers core(·) ofG by invokingMC-EGO (Line 1), which will be

discussed in Section 5. In addition, MC-EGO also returns an upper

bound ω of the clique number ω(G) such that Algorithm 1 can ter-

minate at Line 2 if |C∗ | = ω, i.e., the heuristically computed clique

is certified to be maximum. Then, we iteratively process the ego-

networksG[N+(u)], for verticesu ∈ V in reverse order (Lines 4–14),

to find a |C∗ |-clique in G[N+(u)] (Line 13) where C∗ stores the cur-
rently found largest clique. If G[N+(u)] contains a |C∗ |-clique C ,
then {u} ∪C updates C∗ (Line 14). As the ego-networks are small

and dense, we represent them by an adjacency matrix (Line 12).

Thus, we can invoke one of the existing MCC-Dense solvers (e.g.,
[13, 14, 21, 22]) to compute KCF-Dense at Line 13.

To reduce the number of KCF-Dense instances to be generated
at Line 13, we use core number-based upper bound (Line 5) and

coloring-based upper bound (Line 7) to prune an ego-network if

an upper bound of its clique number is smaller than the size of the

currently found largest cliqueC∗. To facilitate efficient ego-network

extraction, we orient the input graph G to obtain a directed graph

G+ based on the degeneracy ordering (Line 3), where each edge

points from the lower-ranked end-point to the other end-point.

Analysis of MC-BRB. Due to the NP-hardness of MCC, the time

complexity of Algorithm 1 is exponential to δ (G) in the worst-

case. Recall that, Algorithm 1 generates n KCF-Dense instances in
the worst-case, and the largest KCF-Dense instance contains δ (G)
vertices. Our empirical studies in Section 6 show that the number

of generated KCF-Dense instances is very small as a result of the

pruning techniques at Lines 5–8.

It is worth mentioning that it is feasible to represent the ego-

networks by an adjacency matrix at Line 12. Specifically, the size of

Algorithm 1: MC-BRB(G = (V ,E))

1 (C∗, ω, Dorder(·), color(·), core(·)) ← MC-EGO(G);
2 if |C∗ | < ω then
3 G+ ← a directed graph by orienting G w.r.t. Dorder(·);

4 for each vertex u in reverse order w.r.t. Dorder(·) do
5 if core(u) < |C∗ | then break;
6 N +(u) ← the set of u ’s out-neighbors in G+;
7 if UniqColors

(
N +(u), color(·)

)
< |C∗ | then

8 continue;

9 Extract the subgraph д of G induced by N +(u);
10 Reduce д to its ( |C∗ | − 1)-core;
11 if д , ∅ then
12 Construct an adjacency matrix A for д;
13 C ← KCF-BRB

(
A, V (д), |C∗ |

)
; /* KCF-Dense */;

14 if |C | = |C∗ | then C∗ ← {u } ∪C ;

15 return C∗;

the adjacency matrix is bounded by (δ (G))2 ≤ 2m+3n by following

Lemma 3.3; note that, this bound is pessimistic, and in practice

δ (G) is usually much smaller than

√
2m + n for real graphs (e.g., see

Table 2 in Section 6). Moreover, to control the memory footprint,

we represent the adjacency matrix A by a one-dimensional boolean

array, which is simulated by a 32-bit integer array; that is, each bit

represents one boolean value. Then, we have the following lemma.

Lemma 3.5: The largest adjacency matrix constructed forG[N+(u)]

foru ∈ V can be represented by (δ (G))
2

32
+δ (G) ≤ 2m+n+34

√
2m+n

32
+1

integers.

As m ≤ n(n−1)
2

holds in the worst case, we have 2m + n ≤

n2. Thus, the largest adjacency matrix A can be represented by

2m+n+34n
32

+ 1 = m
16
+ 35n

32
+ 1 integers, which is small.

4 A BRANCH-REDUCE-&-BOUND
FRAMEWORK FOR KCF-DENSE

Although the KCF-Dense instances generated in Algorithm 1 can

be directly computed by the existing MCC-Dense solvers, this is

inefficient as the existing MCC-Dense solvers are mainly optimized

for (hard) graphs that typically have only thousands of vertices but

take tens or hundreds of seconds to process. For example, in [14] the

graphs that can be solvedwithin 0.1 second are excluded from the ex-

periments. However, the average processing time of our generated

KCF-Dense instances is less than 0.1 seconds (see Section 6). More-

over, all existing MCC-Dense solvers follow the branch-&-bound

framework. Motivated by this, we develop a new branch-reduce-&-
bound framework for the problem of KCF-Dense in this section.

The pseudocode of our branch-reduce-&-bound framework, de-

noted KCF-BRB, is shown in Algorithm 2. We directly use the

adjacency matrix A of a graph to refer the graph itself. Note that,

we only store one copy of the adjacency matrix A, and a subgraph

of A is represented by its vertex set R. Given A, a subset R of can-

didate vertices of A, and an integer k > 0, KCF-BRB returns a

k-clique of A[R] (the subgraph of A induced by R) if there is one
(Lines 3,9), and returns ∅ otherwise (Lines 5,11). To do so, we first

reduce the problem instance by invoking the procedure Reduce
which returns a clique C ′, and a smaller R′ and k ′ (Line 2). Then,
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Algorithm 2: KCF-BRB(A,R,k)
1 Obtain the degree d (·) of all vertices of R in A[R];
2 (C′, R′, k ′) ← Reduce(A, R, k, d (·)); /* Reduce */;

3 if k ′ = 0 then return C′;
4 colorR′ (·) ← ReColoring

(
A, R′, k ′ − 1, d (·)

)
; /* Bound */;

5 if UniqColors
(
R′, colorR′ (·)

)
< k ′ then return ∅;

6 Order R′ such that vertices with colorR′ (·) ≥ k ′ − 1 are put at the
front obeying the degeneracy ordering;

7 for each vertex u in R′ s.t. colorR′ (u) ≥ k ′ − 1 do
8 C ← KCF-BRB

(
A, NR′ (u), k ′ − 1

)
; /* Branch */;

9 if |C | = k ′ − 1 then return C ∪ {u } ∪C′;
10 R′ ← R′\{u };

11 return ∅;

we compute an upper bound ω of the clique number ω(A[R′]) of
A[R′] (Line 4), and return ∅ indicating that there is no k-clique
in A[R] if ω is smaller than k ′ (Line 5). If the problem instance is

not pruned by the bounding technique, then we branch on each

vertex u ∈ R′ (Line 7), according to a total ordering of R′ (Line 6),
to find a (k ′−1)-clique of A[NR′(u)] (Line 8), where NR′(u) denotes
the set of neighbors of u in R′. When branching on vertex u, if
a (k ′ − 1)-clique C is found in A[NR′(u)], then C ∪ {u} ∪ C ′ is a
k-clique of A[R] (Line 9); otherwise, u is removed from R′(Line 10).

The framework in Algorithm 2 is general, as different branching,

reducing, and bounding techniques can be employed. In this paper,

we propose new reducing techniques in Section 4.1, while adopting

the branching and bounding techniques that have been used in the

existing MCC-Dense solvers. For bounding, we use the recoloring
technique proposed in [22] to reduce the number of distinct colors

that are used; please refer to [22] for the details of recoloring. For

branching, we use the light-weight technique in [14]. Specifically,

given a degeneracy ordering and a coloring of R′ and to compute

a k ′-clique in A[R′], we reorder the vertices in R′ such that all

vertices with colors no smaller than k ′ − 1 are put at the beginning
by obeying the degeneracy ordering, while other vertices are put

at the end (Line 6). Then, for each vertex u in R′ with color at least

k ′−1 and according to this order, we generate a branch by including
u into the clique (Line 8) and also a branch by excluding u (Line 10).

Recall that, colors are integers starting from 0. Thus, every k ′-clique
of A[R′] must contain a vertex with color no smaller than k ′ − 1.

4.1 Our Reducing Technique
Given an instance of KCF-Dense (i.e., a graphд and an integer k), we
propose techniques to safely remove vertices from д and decrease

k . Before that, we first introduce several notations. Given a vertex

subset S of д, we use д − S to denote the result of removing from д
all vertices of S and their associated edges. Given vertices u1 and
u2 of д, we use д − {u1,u2} + u1,2 to denote the resulting graph

by contracting u1 and u2 into a super-vertex, denoted u1,2, while
adjacent edges of u1 and u2 are preserved for u1,2 based on the and-
semantics. That is, д − {u1,u2} + u1,2 is obtained from д − {u1,u2}
by adding a vertex u1,2 and adding an edge between u1,2 and every

vertex of д − {u1,u2} that are neighbors of both u1 and u2.
Degree-based Reduction Rules. We focus our discussions on a

vertex u of д, and modify д and k correspondingly if dд(u) < k − 1
or dд(u) ≥ |V (д)| − 4.

1 Low Degree Reduction Rule: dд(u) < k − 1. It is easy to see that

if the degree dд(u) of u is less than k − 1, then every clique in д
that contains u must be of size smaller than k . Thus, we can safely

remove u from д.

2 All Connection Reduction Rule: dд(u) = |V (д)| − 1. If u is adjacent

to all other vertices of д, then every maximum clique in д includes

u. Thus, we can remove u from д, and decrease k by 1.

, , k − 1

u

u′

v2

v1

v3 k

v4 v4

v3

v2

v1

Figure 3: One neighbor missing reduction rule
3 One Neighbor Missing Reduction Rule: dд(u) = |V (д)| − 2. If u is

adjacent to all but one other vertices of д and let u ′ be the unique
vertex that is not adjacent to u, then there exists a maximum clique

in д that contains u (and thus does not contain u ′). The reason

is as follows: consider any maximum clique C in д that does not

contain u (C must contain u ′, otherwise C is not maximal), then

(C\{u ′})∪{u} is a maximum clique that containsu but notu ′. Thus,
we can remove {u,u ′} from д, and decrease k by 1, see Figure 3.

, ,k k − 1
u1

u v1
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v4u2 v4
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(a) Case 1 of two neighbors missing reduction rule

, ,k k − 1
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(b) Case 2 of two neighbors missing reduction rule

Figure 4: Two neighbors missing reduction rules
4 Two Neighbors Missing Reduction Rules: dд(u) = |V (д)| − 3. If u is

adjacent to all but two other vertices of д and let u1 and u2 be the
two non-adjacent vertices of u, then there are two cases depending

on whether (u1,u2) is in E(д).

Lemma 4.1: Consider a vertex u in д that is adjacent to all vertices
but u1 and u2 of д (see Figure 4).

(1) (u1,u2) < E(д): then there exists a maximum clique in д that
contains u (and thus contains none of {u1,u2}), i.e., ω(д) =
ω(д − {u,u1,u2}) + 1.

(2) (u1,u2) ∈ E(д): then there exists a maximum clique in д that
contains either {u} or {u1,u2}. Thus, let д′ be the graph ob-
tained from д by removing u and contracting u1 and u2 (i.e.,
д − {u,u1,u2} + u1,2), we have ω(д) = ω(д′) + 1.

Following Lemma 4.1, the reduction rules for two neighbors

missing are as follows. If (u1,u2) < E(д), then we can safely remove

{u,u1,u2} from д and decrease k by 1, see Figure 4(a). Otherwise,

we change д to д − {u,u1,u2} + u1,2 (i.e., remove u and contract u1
and u2) and decrease k by 1, see Figure 4(b).
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5 Three Neighbors Missing Reduction Rules: dд(u) = |V (д)| − 4. If u
is adjacent to all but three other vertices of д and let u1, u2 and u3
be the three non-adjacent vertices of u, then there are four cases

depending on the number of edges in the subgraph of д induced by

{u1,u2,u3}; denote this set of edges by E({u1,u2,u3}).

Lemma 4.2: Consider a vertex u in д that is adjacent to all vertices
but u1, u2 and u3 of д (see Figure 7 in Appendix).

(1) |E({u1,u2,u3})| = 0: then there exists a maximum clique in д
that contains u (and thus contains none of {u1,u2,u3}).

(2) |E({u1,u2,u3})| = 1: without loss of generality (w.l.o.g.) as-
sume that the edge is between u1 and u2, then there exists a
maximum clique in д that does not contain u3.

(3) |E({u1,u2,u3})| = 2: w.l.o.g. assume that (u1,u2) ∈ E(д) and
(u2,u3) ∈ E(д), let д′ be the graph obtained from д by remov-
ing u, making a copy u ′

2
for u2, and contracting {u1,u2} and

contracting {u ′
2
,u3} (i.e.,д′ = д−{u,u1,u2,u3}+{u1,2,u2,3}),

then ω(д) = ω(д′) + 1.
(4) |E({u1,u2,u3})| = 3: let д′′ be the graph obtained from д by

removing u, making a copy u ′
1
, u ′

2
, and u ′

3
, respectively, for u1,

u2, and u3, and contracting {u1,u ′
2
}, contracting {u2,u ′

3
} and

contracting {u3,u ′
1
}, and adding an edge betweenu1,2 andu2,3

(i.e.,д′′ = д−{u,u1,u2,u3}+{u1,2,u2,3,u3,1}+{(u1,2,u2,3)}),
then ω(д) = ω(д′′) + 1.

Please see the four subfigures in Figure 7 in Appendix for an

example of the above four cases. Similar to the reduction rules for

two neighbors missing, it is straightforward to design reduction

rules correspondingly for the four cases of three neighbors missing

by following Lemma 4.2; we omit the details. The number of vertices

of д is reduced by 4, 3, 2 and 1, respectively, for the four cases.

Efficiently Apply The Reduction Rules. Intuitively, the more

reduction rules applied, the smaller the resulting graph. Thus, we

propose to iteratively and exhaustively apply all the reduction rules

one after another until no reduction rule can be applied to the

resulting graph. The pseudocode of iteratively and exhaustively

applying all the degree-based reduction rules, denoted Reduce, is
shown in Algorithm 3, which runs in iterations. In each iteration,

it sequentially checks each vertex u of R (Line 4), and applies the

corresponding reduction rule if d(u) < k − 1 or d(u) ≥ |R | − 4

(Lines 5–6). As each reduction rule is correct, Algorithm 3 is correct

regardless of the ordering of applying the reduction rules. Note

that the reduction rules are applied to the dense ego-networks of
the input graph G, rather than directly to the sparse input graph G .

There are two things worth mentioning regarding the implemen-

tation. Firstly, the last two reduction rulesmaymodify the adjacency

matrix A due to contracting vertices (see case 2 of Lemma 4.1 and

cases 3–4 of Lemma 4.2). In our implementation, to contract ver-

tices u1 and u2, we use u1 to represent the super-vertex u1,2 by

removing the edge between u1 and each of its neighbors that is

not adjacent to u2. Thus, the only modification to A is removing

edges. Note that, all modifications to A are restored in Algorithm 2

when backtracking. Secondly, when applying two neighbors miss-

ing and three neighbors missing reduction rules, we are sure that

one more vertex will be added to C after processing the resulting

graph, however we do not know at this moment which additional

vertex will be added (see the proofs of Lemma 4.1 and Lemma 4.2).

Thus, we add a dummy vertex into C and also bookkeep auxiliary

Algorithm 3: Reduce(A,R,k,d(·))
1 C ← ∅;
2 while true do
3 preSize ← |R |;
4 for each vertex u in R do
5 if d (u) < k − 1 or d (u) ≥ |R | − 4 then
6 Apply the corresponding reduction rule for u ;

7 if |R | = preSize then break;

8 return (C, R, k );

information for this situation, and then replace the dummy vertex

with a proper vertex based on the stored auxiliary information in a

post-processing phase. We omit the details from Algorithm 2 and

Algorithm 3 for presentation simplicity.

Lemma 4.3: The time complexity of Algorithm 3 is O((|R | − |R′ | +
1) · |R |), where R is the input set of candidate vertices and R′ is the
output set of candidate vertices.

The time complexity of Algorithm 3 is proved by Lemma 4.3

in above. Note that, Algorithm 3 is light-weight: (1) the amortized

time complexity of reducing one vertex is O(|R |), and (2) for graphs
that Algorithm 3 cannot reduce any vertex, the running time is

bounded by O(|R |) which is negligible.

5 OUR HEURISTIC ALGORITHM MC-EGO
In this section, we propose a heuristic algorithmMC-EGO for com-

puting a near-maximum clique in near-linear time. As themaximum

clique in many real world graphs can be easily found (see the first

evaluation in Section 6.1), we first present a linear time algorithm

MC-DD. In a nutshell,MC-DD computes a maximum degree-based

clique and a degeneracy-based clique, and returns the one with a

larger cardinality. The degeneracy-based clique is obtained as

the longest suffix of the degeneracy ordering that is a clique. The

pseudocode of MC-DD is shown and discussed in Section A.2 in

Appendix. Note that, besides a clique C∗,MC-DD also outputs an

upper bound ω of the clique number of G, such that C∗ is certified
to be a maximum clique if |C∗ | = ω. MC-DD runs in O(m) time as

the degeneracy ordering can be computed in O(m) time [5].

Our heuristic algorithm MC-EGO invokes MC-DD such that

it stops in linear time if MC-DD computes and certifies a maxi-

mum clique. Otherwise, MC-EGO computes a degeneracy-based

clique for every ego-networkG[N+(u)] ofG , and report the largest
one. Thus, MC-EGO is an ego-centric degeneracy-based greedy

algorithm. The pseudocode ofMC-EGO is shown in Algorithm 4,

which follows the same structure as the exact algorithm MC-BRB
(Algorithm 1) with two differences. Firstly, rather than invoking

KCF-BRB for finding a k-clique in an ego-networkG[N+(u)]which
is NP-complete, we compute a degeneracy-based clique inG[N+(u)]
in linear time to the size of G[N+(u)] (Lines 11-12). Secondly, we
also compute a tighter upper bound of ω(G) which is obtained as

the largest value among the clique number upper bounds computed

for the ego-networks (Lines 14–16); the correctness of the tighter

upper bound directly follows from Lemma 3.1.

The time complexity of MC-EGO is O(δ (G) ·m) as proved in

the theorem below. This time complexity is near-linear as δ (G) is

bounded by ⌈
√
2m + n⌉ and is at most thousands for real graphs
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Algorithm 4: MC-EGO(G = (V ,E))

1 (C∗, ω, Dorder(·), color(·), core(·)) ← MC-DD(G);
2 if |C∗ | < ω then
3 ω′ ← |C∗ |;
4 G+ ← a directed graph by orienting G w.r.t. Dorder(·);

5 for each vertex u in reverse order w.r.t. Dorder(·) do
6 The same as Lines 5–9 of Algorithm 1, and д = G[N +(u)];
7 C ← compute the degeneracy-based clique of д;
8 if |C | ≥ |C∗ | then C∗ ← {u } ∪C ;

9 Compute a graph coloring color′(·) for д;
10 if UniqColors

(
V (д), color′(·)

)
+ 1 > ω′ then

11 ω′ ← UniqColors
(
V (д), color′(·)

)
+ 1;

12 if ω′ < ω then ω ← ω′;

13 return (C∗, ω, Dorder(·), color(·), core(·));

(see Table 2 in Section 6). It is worth mentioning that for the graphs

that MC-DD computes and certifies a maximum clique, MC-EGO
also computes a maximum clique in linear time.

Theorem 5.1: MC-EGO runs in O(δ (G) ·m) time.

6 EXPERIMENTS
In this section, we evaluate the performance of our algorithms for

computing maximum cliques in large real graphs. The main goals

of this experimental study are as follows.

(1) We evaluate our exact algorithm MC-BRB against the ex-

isting algorithms for MCC-Sparse, and show thatMC-BRB
outperforms all existing algorithms. (Section 6.1)

(2) We evaluate the individual techniques used inMC-BRB, and
show that each of the techniques contributed to the efficiency

of MC-BRB. (Section 6.2)

(3) We evaluate our heuristic algorithm MC-EGO, and show

that it returns near-maximum cliques (i.e., with a gap of at

most 3) for all the tested graphs. (Section 6.3)

Compared Algorithms. We evaluate the following exact algo-

rithms for MCC-Sparse.
Existing Exact Algorithms. We include three state-of-the-

art algorithms for MCC-Sparse: PMC [18], BBMCSP [19],

and RMC [15]. Note that, none of the existing MCC-Dense
solvers can process the graphs we tested.

Our Exact Algorithms. Besides MC-BRB 1
, we also imple-

mented several of its variants to evaluate the individual tech-

niques used in MC-BRB (see the description in Section 6.2).

In addition, we also evaluate the two heuristic algorithms pre-

sented in Section 5: MC-DD and MC-EGO. All algorithms are im-

plemented in C++, and run in a single-thread mode. The bit-parallel

technique of BBMCSP is enabled in our testings.

Datasets.We evaluate the algorithms on 19 large real graphs from

different domains, which are downloaded from the Stanford Net-

work Analysis Platform
2
, the Laboratory of Web Algorithmics

3

and the Network Repository
4
. Descriptions of the graphs can also

be found there. Statistics of the graphs are shown in Table 5 in

Appendix.

1
The source code ofMC-BRB is available at https://github.com/LijunChang/MC-BRB

2
http://snap.stanford.edu/

3
http://law.di.unimi.it/datasets.php

4
http://networkrepository.com/

Measures. We measure the running time and memory usage of
the algorithms. The reported running time is the total CPU time

excluding only the I/O time of loading graph from disk to main

memory, and a timeout of 5 hours is set. The reported memory

usage is “the maximum resident set size of the process during its

lifetime”, as measured by the Linux command /usr/bin/time.5

Experiments are conducted on a machine with an Intel(R) Xeon(R)

3.4GHz CPU and 16GB main memory running Linux (64bit Debian).

6.1 Against the Existing Algorithms
We evaluate the efficiency of our exact algorithm MC-BRB against

the state-of-the-art algorithms: PMC, BBMCSP, and RMC. We also

tested FMC, and the results show that it is consistently outper-

formed by PMC, BBMCSP and RMC, conforming to the existing

experimental studies in [15, 18, 19]; thus, we omit FMC.

Evaluate the Hardness of Graph Instances. To show the hard-

ness of a graph instance for maximum clique computation, we

record the stage at whichMC-BRB terminates. Recall that,MC-BRB
invokesMC-EGO for heuristically computing an initial cliquewhich

in turn invokesMC-DD. Thus, we sayMC-BRB terminates at stage

“S1” if it terminates immediately after MC-DD, at stage “S2” if it
terminates immediately after MC-EGO, and at stage “S3” other-

wise. That is, a maximum clique is found and certified in linear time

(i.e., O(m)) byMC-DD and in near-linear time (i.e., O(δ (G) ·m)) by
MC-EGO, respectively, if MC-BRB terminates at stages S1 and S2;

for these two cases, we say the graph is an easy instance for MCC.
From the last column of Table 2, we can see that among the 19 real

graphs, the maximum clique is computed and certified by MC-DD
for six graphs, and by MC-EGO for four graphs.

Evaluate Running Time Against Existing Algorithms. The
running time of PMC, BBMCSP, RMC and MC-BRB are shown

in the 5th, 8th, 11th, and 14th columns of Table 2, respectively.

We can see that MC-BRB consistently runs faster than all existing

algorithms. Firstly, it is worth noting that RMC is a Monte Carlo

algorithm which may not always output a maximum clique; for

example, on graphs human-gene2 and as-Skitter, it has an abso-

lute error of 1. Secondly, the speedup ofMC-BRB over the existing

algorithms can be up-to several orders of magnitude. For example,

for graphs human-gene1, twitter-mpi, and tech-p2p, MC-BRB
computes a maximum clique under five minutes while none of

the existing algorithms can finish within five hours. Note that, we

also modified the maximal clique enumeration algorithm in [7] to

compute maximum clique by pruning a branch if |P | + |R | is no
larger than the currently found largest clique. However, it does not

perform well; for example, the running time on wiki-Talk and

as-Skitter are 40 and 23 seconds, respectively.

Evaluate Memory Usage Against Existing Algorithms.We re-

port the memory usage of these algorithms in the 6th, 9th, 12th and

15th columns of Table 2. The main objective is to show that using

adjacency matrices to represent ego-networks inMC-BRB is fea-

sible in terms of memory consumption. We can see that MC-BRB
has a smaller memory footprint than the existing algorithms; this

is mainly due to the compressed sparse row (CSR) representation

of the input graph inMC-BRB. We further illustrate in Figure 5 the

5
http://man7.org/linux/man-pages/man1/time.1.html
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Table 2: Running time and memory usage of MC-BRB against existing algorithms (Stg: Stage); note that RMC has an additive
error of 1 for human-gene2 and as-Skitter

Graph ω(G) δ (G)
PMC BBMCSP RMC MC-BRB

|C0 | Time Mem |C0 | Time Mem |C0 | Time Mem |C0 | Time Mem Stg

Email 16 37 15 0.07s 69M 13 0.2s 38M 16 0.064s 38M 16 0.016s 15M S3

Epinions 23 67 22 0.2s 34M 20 0.18s 25M 23 0.12s 18M 23 0.061s 10M S3

slashdot 26 54 24 0.13s 32M 22 0.216s 30M 24 0.065s 18M 26 0.021s 10M S3

DBLP 114 113 114 0.047s 62M 114 0.086s 69M 114 0.055s 57M 114 0.019s 20M S1

Amazon 11 10 11 0.095s 115M 11 0.171s 112M 11 0.1s 84M 11 0.065s 38M S1

Google 44 44 44 0.368s 207M 44 2.06s 273M 44 0.282s 168M 44 0.149s 72M S1

wiki-Talk 26 131 22 4.8s 843M 16 6.8s 385M 22 3.5s 389M 26 0.75s 136M S3

human-gene2 1,300 1,902 1,250 5,996s 415M - >5h - 1,240 95s 160M 1,300 43s 94M S3

as-Skitter 67 111 66 1.21s 574M 50 5.54s 502M 66 0.92s 350M 67 0.26s 157M S2

human-gene1 1,335 2,047 - >5h - - >5h - - >5h - 1,335 76s 126M S3

soc-flickr 98 568 77 663s 857M 68 98.8s 698M 74 3,877s 786M 96 40s 227M S3

patent 11 64 11 3.8s 844M 10 12.6s 1G 11 3.9s 691M 11 2.5s 294M S2

soc-pokec 29 47 29 8.09s 810M 29 19s 1.1G 29 3.62s 469M 29 3.09s 309M S2

LiveJ 321 372 302 4.68s 1.4G 314 23.15s 2G 321 3.94s 1.1G 321 2.27s 532M S2

twitter-mpi 131 677 - >5h - - >5h - - >5h - 130 239s 1.3G S3

tech-p2p 178 853 - >5h - - >5h - - >5h - 175 263s 1.5G S3

uk-2002 944 943 944 7.2s 7.6G 944 9.4s 2.7G 944 7.8s 5.3G 944 1.7s 2.6G S1

webbase 1,507 1,506 - - oom 1,507 52s 15G - - oom 1,507 7.8s 10G S1

it-2004 3,222 3,224 - - oom - - oom 3,222 240s 15G 3,222 8.4s 9G S1

Table 3: Running time of our algorithms (s: seconds, h: hours)
Graph MC-EGO MC-BRB MC-BRB/I MC-BRB/R MC-BRB/C MC-BRB/B MC-A/IR MC-M/IR MC-MoMC
Email 0.016s 0.016s 0.021s 0.016s 0.016s 0.016s 0.023s 0.020s 0.016s

Epinions 0.061s 0.061s 0.060s 0.061s 0.061s 0.061s 0.080s 0.076s 0.062s

slashdot 0.021s 0.021s 0.022s 0.021s 0.021s 0.021s 0.022s 0.022s 0.022s

wiki-Talk 0.64s 0.75s 0.72s 0.72s 0.77s 0.75s 0.78s 0.74s 1.44s

human-gene2 31s 43s 35s 62s 43s 43s 150s 49s >5h

human-gene1 53.8s 76s 61s 559s 77s 76s 1656s 528s >5h

soc-flickr 14.8s 40s 50s 40s 61s 42s 174s 63s 1,485s

twitter-mpi 33s 239s 421s 304s 612s 251s 1,700s 536s 1,847s

tech-p2p 115s 263s 274s 634s 481s 277s 2,274s 615s 3,516s
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Figure 5: Density of matrices
average and the minimum density of the ego-networks that are rep-

resented by adjacency matrices (
2m

n(n−1) ). We can see that they are

above 0.5 and 0.4, respectively, across all these graphs. Moreover, as

shown in the third column of Table 2, the degeneracy δ (G), which
bounds the maximum number of vertices in the ego-networks, is

small for real graphs. Thus, the memory overhead of representing

ego-networks by adjacency matrices is negligible.

6.2 Individual Techniques in MC-BRB
We now evaluate the effectiveness of the different techniques that

are used in MC-BRB, by implementing the following variants.

• MC-MoMC: invoke the existing MCC-Dense solverMoMC 6

in [14] for computing KCF-Dense at Line 13 of Algorithm 1.

• MC-BRB/I: MC-BRB without initial clique computation.

6
http://www.mis.u-picardie.fr/~cli/MoMC2016.c

• MC-BRB/R: MC-BRB without reducing.

• MC-BRB/C: MC-BRB without recoloring.

• MC-BRB/B: MC-BRB without advanced branching.

We run the algorithms on the graphs thatMC-EGO does not certify a
maximum clique. Table 3 shows the running time. Table 4 in Appen-

dix illustrates the number of KCF-Dense instances (#KCF-Dense)
generated at Line 13 of Algorithm 1, the total number of invocations

of Algorithm 2 (#branches) which indicates the search space, and

the maximum depth (D) of recursively invoking Algorithm 2.

Invoke Existing MCC-Dense Solvers for KCF-Dense. The running
time of MC-MoMC is shown in the last column of Table 3. We can

see thatMC-MoMC, despite of having a large overhead incurred

byMoMC, runs faster than the existing algorithms in Table 2. This

demonstrates the superiority of our strategy by transforming the

problem of MCC-Sparse to the problem of KCF-Dense. Nevertheless,
from the second and third columns of Table 3 and the second column

of Table 4, we can infer that the average processing time of the

generated KCF-Dense instances is less than 0.1 seconds, which is

out of the scope of the existing MCC-Dense solvers’ optimization

goals. This motivates us to propose a new algorithm KCF-BRB for

the KCF-Dense instances generated from MCC-Sparse.

Evaluate The Effect of Initial Clique Computation. By com-

paring the results ofMC-BRB/IwithMC-BRB in Tables 3 and 4, we

can see that computing a larger initial clique inMC-BRB, although
reduces the number of KCF-Dense instances, has a mixed effect
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on the total running time. This is because, MC-BRB/I, although
does not invoke MC-EGO nor MC-DD, inherently computes the

degeneracy-based clique due to our strategy of processing the ego-

networks in the reverse order according to the degeneracy ordering.

Thus, if MC-EGO does not compute a much larger clique than

the degeneracy-based clique, then MC-BRB can run slower than

MC-BRB/I due to the overhead ofMC-EGO (e.g., on human-gene1
and human-gene2) as shown in the second column of Table 3. Nev-

ertheless, MC-BRB is more robust than MC-BRB/I.

Evaluate Reducing, Bounding, and Branching. To evaluate the
effect of reducing, bounding and branching, we evaluate MC-BRB
againstMC-BRB/R,MC-BRB/C andMC-BRB/B. Here,MC-BRB/R
does not use reducing, MC-BRB/C uses the standard greedy color-

ing strategy without recoloring, andMC-BRB/B uses the highest

color-based branching technique, as done in PMC and BBMCSP.
By comparing the running time and #Branches of the four al-

gorithms, we can see that all the three techniques (i.e., reducing,
bounding and branching) have positive effects. Note that, all the

four algorithms process the same number of KCF-Dense instances,

and they differ only in how each KCF-Dense instance is solved.

Firstly, we separate the running time of MC-BRB/R and MC-BRB
into initial time (i.e., the time ofMC-EGO) and search time (i.e., the
total time minus the initial time). We can see that the reducing tech-

nique speeds up the search time by 22 and 3.5 times, respectively,

for human-gene1 (from 505.2s to 22.2s) and tech-p2p (from 519s
to 148s); this can be explained by the significantly reduced search

space (i.e., #Branches). Secondly, we can see that both the recoloring
optimization and the branching technique that are adopted from

MCC-Dense improve the running time.

Evaluate Adjacency Matrix Representation. To evaluate the

impact of representing ego-networks by adjacency matrices, we

implemented another two variants ofMC-BRB that only differ from

each other in the graph representation:MC-A/IR andMC-M/IR use

adjacency array and adjacency matrix, respectively. The running

time is shown in the 8–9th columns of Table 3. We can see that

representing ego-networks by adjacency matrices improves the

performance. This is due to the more efficient access of a vertex’s

neighbors in an induced subgraph based on an adjacency matrix.
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Figure 6: Gap to the clique number ω(G)

6.3 Effectiveness of MC-EGO
Figure 6 shows the gap between the clique reported byMC-EGO
(respectively, MC-DD) and the clique number ω(G), for the graphs
thatMC-DD does not certify a maximum clique (i.e., ω > |C∗ |). We

can see thatMC-EGO has a much smaller gap thanMC-DD (e.g.,
1 v.s. 47 for twitter-mpi), and the gap for MC-EGO is at most 3.

Thus,MC-EGO computes a near-maximum clique, and can be used

in practice for efficiently computing a high-quality clique.

7 CONCLUSION
In this paper, we built a bridge between MCC over sparse graphs

(MCC-Sparse) and MCC over dense graphs (MCC-Dense) by trans-

forming an instance of MCC-Sparse to instances of KCF-Dense, and
developed a branch-reduce-&-bound framework for KCF-Dense. We

designed an exact algorithmMC-BRB, and an ego-centric heuris-

tic algorithmMC-EGO. Experimental results on large real graphs

demonstrated the efficiency and effectiveness of our algorithms.
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Table 4: Number of KCF-Dense instances (#KCF-Dense) and branches (#Branches), and search depth (D)

Graph

MC-BRB MC-BRB/I MC-BRB/R MC-BRB/C MC-BRB/B
#KCF-Dense #Branches D #KCF-Dense #Branches D #Branches D #Branches D #Branches D

Email 2 2 1 83 83 1 2 1 2 1 2 1

Epinions 8 8 1 253 253 1 10 2 8 1 8 1

slashdot 4 4 1 108 108 1 4 1 4 1 4 1

wiki-Talk 485 1,934 3 1,447 2,896 3 2,114 3 3,465 3 1,934 3

human-gene2 653 653 1 1,541 1,541 1 3,308 9 653 1 653 1

human-gene1 928 991 2 2,110 2,173 2 43,691 11 1,491 3 991 2

soc-flickr 1,660 63,102 3 6,331 189,449 5 70,985 5 174,767 5 65,891 4

twitter-mpi 2,761 770,581 7 9,093 1,611,461 7 983,321 9 3,483,581 7 796,121 6

tech-p2p 2,044 471,320 6 12,105 481, 381 6 1,418,101 11 1,616,649 7 516,135 6

A APPENDIX
A.1 Three Neighbors Missing Reduction Rules
The four cases of the three neighbors missing reduction rules are

illustrated in Figure 7.
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Figure 7: Three neighbors missing reduction rules

A.2 Pseudocode of MC-DD
The pseudocode of MC-DD is shown in Algorithm 5. We first com-

pute a clique C∗ by using the maximum degree-based heuristic

(Line 1). Specifically, given an initial clique C consisting of one

vertex, we iteratively add toC the vertex that has the largest degree

and is adjacent to all vertices of C . To obtain a larger clique, we

run this process for the 10 vertices with the largest degrees, and

then choose the largest clique. Then, we reduce the input graph G
to its |C∗ |-core for time efficiency (Line 2), compute a degeneracy

ordering Dorder(·) forG (Line 3), and obtain the degeneracy-based

clique of G (Line 4). In order to compute an upper bound of the

clique number ofG , we also compute a graph coloring color(·) and
core numbers core(·) of V (G) (Line 6); note that, here we do not

Algorithm 5: MC-DD(G = (V ,E))

1 Compute a clique C∗ by the maximum degree-based heuristic;

2 G ← the |C∗ |-core of G ;

3 Compute a degeneracy ordering Dorder(·) of V (G);
4 C ← the degeneracy-based clique of G ;

5 if |C | > |C∗ | then C∗ ← C ;

6 Compute color(·) and core(·) for vertices of V (G);
7 ω ← UniqColors(V (G), color(·));
8 return (C∗, ω, Dorder(·), color(·), core(·));

use the recoloring technique. The upper bound then is obtained as

the number of distinct colors used in the coloring (Line 7).

A.3 Additional Experimental Information
Statistics of the tested graphs are shown in Table 5, where graphs

are in increasing order regarding the number of edges. Here, the

number of edges is the number of undirected edges.

Table 5: Statistics of real graphs (density: 2m
n(n−1) )

Graph #Vertices #Edges density Type

Email 224,832 339,925 < 10
−4

Commun.

Epinions 75,877 405,739 < 10
−3

Social

slashdot 77,350 468,554 < 10
−3

Social

DBLP 317,080 1,049,866 < 10
−4

Collabor.

Amazon 403,364 2,443,311 < 10
−4

Copurchase

Google 875,713 4,322,051 < 10
−4

Web

wiki-Talk 2,388,953 4,656,682 < 10
−5

Commun.

human-gene2 14,022 9,027,024 0.092 Biological

as-Skitter 1,694,616 11,094,209 < 10
−5

Auto. Sys

human-gene1 21,890 12,323,680 0.052 Biological

soc-flickr 1,715,255 15,555,041 < 10
−4

Social

patent 3,774,768 16,518,947 < 10
−5

Citation

soc-pokec 1,632,803 22,301,964 < 10
−4

Social

LiveJ 4,843,953 42,845,684 < 10
−5

Social

twitter-mpi 9,862,152 99,940,317 < 10
−5

Social

tech-p2p 5,792,297 147,829,887 < 10
−5

Tech.

uk-2002 18,459,128 261,556,721 < 10
−5

Web

webbase 115,554,441 854,809,761 < 10
−6

Web

it-2004 41,290,577 1,027,474,895 < 10
−5

Web

To store large real graphs with hundreds of millions of vertices

in main memory, we use the adjacency array representation (aka

compressed sparse row representation [5]). That is, we store the set

of neighbors of a vertex consecutively in a single large adjacency

array, whereas its start position is stored in another array of size n.
As a result, the input graph G is represented by 2m + n integers.
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