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ABSTRACT
This paper studies the problem of e�ciently computing a maximum
independent set from a large graph, a fundamental problem in graph
analysis. Due to the hardness results of computing an exact maxi-
mum independent set or an approximate maximum independent set
with accuracy guarantee, the existing algorithms resort to heuristic
techniques for approximately computing a maximum independent
set with good performance in practice but no accuracy guarantee
theoretically. Observing that the existing techniques have various
limits, in this paper, we aim to develop e�cient algorithms (with
linear or near-linear time complexity) that can generate a high-
quality (large-size) independent set from a graph in practice. In par-
ticular, firstly we develop a Reducing-Peeling framework which
iteratively reduces the graph size by applying reduction rules on
vertices with very low degrees (Reducing) and temporarily remov-
ing the vertex with the highest degree (Peeling) if the reduction
rules cannot be applied. Secondly, based on our framework we de-
sign two baseline algorithms, BDOne and BDTwo, by utilizing the
existing reduction rules for handling degree-one and degree-two
vertices, respectively. Both algorithms can generate higher-quality
(larger-size) independent sets than the existing algorithms. Thirdly,
we propose a linear-time algorithm, LinearTime, and a near-linear
time algorithm, NearLinear, by designing new reduction rules and
developing techniques for e�ciently and incrementally applying
reduction rules. In practice, LinearTime takes similar time and
space to BDOne but computes a higher quality independent set,
similar in size to that of an independent set generated by BDTwo.
Moreover, in practice NearLinear has a good chance to generate
a maximum independent set and it often generates near-maximum
independent sets. Fourthly, we extend our techniques to accelerate
the existing iterated local search algorithms. Extensive empirical
studies show that all our algorithms output much larger indepen-
dent sets than the existing linear-time algorithms while having a
similar running time, as well as achieve significant speedup against
the existing iterated local search algorithms.
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1. INTRODUCTION
Graph model has been widely used to represent the relationships

among entities in a wide spectrum of applications such as social
networks, collaboration networks, communication networks and
biological networks. Significant research e↵orts have been devoted
towards many fundamental problems in managing and analysing
graph data. In this paper, we study the problem of e�ciently com-
puting an approximate maximum independent set of a graph. A
subset I of vertices in a graph G is an independent set if there is no
edge between any two vertices in I, and its size is measured by the
number of vertices in it. The independent set with the largest size
among all independent sets of G is called the maximum indepen-
dent set of G, which is not unique. Consider the graph in Figure 1,
{v2, v5, v7, v9} is an independent set of size 4, while {v1, v4, v6, v8, v10}
is a maximum independent set of size 5.
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Figure 1: Example

The (maximum) independent set is closely related to the (min-
imum) vertex cover, where a subset C of vertices in G is a vertex
cover if it contains at least one end-point for every edge in G. It is
well-known [34] that I ✓ V is a (maximum) independent set of G if
and only if V\I is a (minimum) vertex cover of G. For example, in
Figure 1, {v1, v4, v6, v8, v10} and its complement {v2, v3, v5, v7, v9} are
the maximum independent set and the minimum vertex cover, re-
spectively. Thus, computing (maximum) independent sets is equiv-
alent to computing (minimum) vertex covers.

Applications. Computing a maximum independent set of a graph
is a prominent fundamental optimization problem and has many
important applications. For example, it has been used in com-
puting social network coverage and reach [32]; that is, compute
a set of vertices covering the graph within their one or several hops
neighborhoods. Araujo et al. [3] propose a maximum independent
set-based approach for collusion detection in voting pools. Wan et
al. [36] reduce the multiflow problem to a sequence of maximum
independent set computations to make a trade-o↵ between accu-
racy and e�ciency. Basagni [5] studies the maximum weighted in-
dependent set problem in a wireless network to organize the nodes
of the network in a hierarchical way. Moreover, computing max-
imum independent sets (or equivalently, computing minimum ver-
tex covers) is also invoked as a subroutine in e↵ective strategies
for other graph processing problems, such as in constructing an
e↵ective matching order for subgraph enumeration [8], in build-



Algorithm Time Complexity Space Complexity Exact Reduction Rules Used
BDOne O(m) 2m + O(n) Degree-one reduction [21]
BDTwo O(n ⇥ m) 6m + O(n) Degree-one reduction [21] & Degree-two vertex reductions [21]

LinearTime O(m) 2m + O(n) Degree-one reduction [21] & Degree-two path reduction (this paper)
NearLinear O(m ⇥ �) 4m + O(n) Dominance reduction [21] & Degree-two path reduction (this paper)

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, �: maximum vertex degree)

ing indexes for processing shortest path/distance queries [14, 22],
in contracting the input graph for external-memory SCC computa-
tion [39], and in refining the result of matching two graphs [40].

Existing Algorithms. The existing algorithms for computing max-
imum independent sets can be categorized as follows.
Exact Algorithms. It is NP-hard to compute a maximum indepen-
dent set [23]. The state-of-the-art exact algorithms [1, 21] are based
on the branch-and-reduce paradigm and have worst-case exponen-
tial time complexities regarding n, the number of vertices in G.
When considering a vertex u, the algorithm branches on two cases:
(i) u is in the independent set, and (ii) u is not. Based on branch-
ing rules, reduction rules, and the measure and conquer analysis,
the algorithm in [21] runs in O⇤(1.2201n) time, where the notation
O⇤ hides factors polynomial in n. Akiba and Iwata [1] recently
show that this paradigm can compute a minimum vertex cover (and
a maximum independent set) for many small and medium-sized
graphs by developing more branching and reduction rules.
Approximation Algorithms. It is pointed out in [26] that approxi-
mately computing a maximum independent set within a factor of
n1�✏ for any 0 < ✏ < 1 (i.e., tighter than n) is NP-hard; that is, max-
imum independent set is also hard to approximate. As a result, the
approximation ratios of the existing techniques depend on either
n or �, where � is the maximum vertex degree of G and is often
of the same order as n; for example, the approximation ratios are
O(n(log log n)2/(log n)3) in [20], �+2

3 in [25], and �+3
5 in [7].

Heuristic Algorithms. In practice, linear-time algorithms such as
Greedy and DU are often adopted to approximately compute a
maximum independent set [30]. Both algorithms iteratively add
the minimum-degree vertex into an initially empty solution, and
at the same time remove the vertex and all its neighbors from the
graph. The di↵erence between these two algorithms is that Greedy
considers vertex degrees in a static way, while DU considers vertex
degrees adaptively in the remaining graph.

Recently, iterative techniques have been proposed to progres-
sively generate larger independent sets until reaching some pre-
defined thresholds; for example, local search algorithms (ARW [2,
30]), evolutionary algorithms (ReduMIS [28]), and algorithms com-
bining local search with simple reduction rules (OnlineMIS [19]).

Motivation. To summarize, due to the hardness results of comput-
ing an exact maximum independent set or approximately comput-
ing a maximum independent set with accuracy guarantee, the ex-
isting algorithms resort to heuristic techniques for approximately
computing a maximum independent set without accuracy guaran-
tee. While Greedy and DU have linear time complexities, they
are only able to generate an approximate maximum independent
set with limited accuracy in practice. On the other hand, although
the local search and evolutionary algorithms ARW, ReduMIS, and
OnlineMIS can find highly accurate approximate maximum inde-
pendent sets by iteratively improving the solution regarding its size,
they could take excessive long time. These motivate our study in
this paper. We aim to design new paradigms and algorithms with
linear or near-linear time complexities to compute high-quality (large-
size) independent sets for large graphs. Below are our main obser-
vations. (i) Real networks are usually power-law graphs with many
low-degree vertices [4]. (ii) Reduction rules (e.g., degree-one ver-

tex reduction and degree-two vertex reductions) have been e↵ec-
tively used for low-degree vertices to reduce the graph size while
preserving the maximality of independent sets [19]. This is because
a vertex with low degree is easier to be determined to be included
or excluded in a maximum independent set, especially when the
degree is 1 or 2. (iii) High-degree vertices are less likely to be in a
maximum independent set [19], and removing/peeling high-degree
vertices can further sparsify the graph [29].

Our Approaches. Based on the above observations, it is a key to
e↵ectively deal with the vertices with very low degrees and very
high degrees. Unlike the existing heuristics [30] that iteratively
add the vertex with the lowest degree into the solution set with an
eye on minimizing the I/O cost, we develop a Reducing-Peeling
framework for approximately computing a maximum independent
set of a graph. Our framework iteratively applies reduction rules
to reduce the graph size (i.e., Reducing) by determining whether
or not the vertices with degree 1, 2, or 3 should be included in a
maximum independent set, as well as temporarily removes the ver-
tex with the highest degree (i.e., Peeling) if no reduction rules can
be applied on the current graph. Note that, a temporarily removed
vertex may be added to the solution set at the end of the algorithm.

Secondly, we devise two baseline algorithms, BDOne and BDTwo,
by integrating the existing reduction rules (for handling degree-
one and degree-two vertices, respectively) in [21] into our new
Reducing-Peeling paradigm. The observation behind BDOne is
that for a degree-one vertex u, there is a maximum independent set
that includes u (i.e., excludes the neighbors of u) [21]; thus, we re-
move the neighbors of u from the graph. For example, consider the
graph in Figure 1, BDOne first removes v9 from the graph by the
degree-one reduction (Reducing). Then, highest-degree vertices v4
and v3 are consecutively removed (Peeling) since the degree-one
reduction cannot be applied. Now, both v1 and v2 become degree-
one vertices; we remove v2 from the graph by the reduction rule.
Similarly, v8 and v6 are removed by Peeling and Reducing, respec-
tively. Thus, BDOne computes the independent set {v1, v5, v7, v10}
of size 4. BDTwo may often output a larger independent set than
BDOne as a result of applying the reduction rules for both degree-
one and degree-two vertices. For example, reconsider the graph
in Figure 1. Firstly, v9 is removed by the degree-one reduction.
Secondly, v6, v7, v8 are contracted into a single super-vertex by the
degree-two reduction [21] since at this moment it is hard to deter-
mine which vertex should be included in a maximum independent
set. Then, the super-vertex for {v6, v7, v8} becomes a degree-one
vertex. Continuing BDTwo, the super-vertex is added into the so-
lution set and v5 is removed. Next, according to the degree-two
reduction [21], {v2, v3} can be removed (details can be found in
Section 2.1). Thus, BDTwo obtains a maximum independent set
{v1, v4, v6, v8, v10} of size 5. The time complexity of BDOne is lin-
ear to m, the number of edges in G, while BDTwo is not a linear-
time algorithm and consumes more memory space (See Table 1).

Thirdly, we design new reduction rules to more e�ciently pro-
cess degree-two vertices than [21] does, and propose a linear-time
algorithm, LinearTime, which takes similar time and space as BDOne
but computes independent sets of similar sizes as BDTwo. Regard-
ing the graph in Figure 1, after v10 is added into the solution set and
v9 is removed from the original graph by the degree-one reduction,



v5 in the remaining graph is removed by our new reduction rule,
and finally v7 and {v2, v3} are removed by the degree-one reduction
and our new reduction rule, respectively. Thus, LinearTime also
obtains {v1, v4, v6, v8, v10} but runs in linear time.

Fourthly, we aim to remove more vertices so that the algorithm
may generate a more accurate solution. We propose a near-linear
time algorithm, NearLinear, to further improve the solution qual-
ity by incorporating the dominance reduction [21]. We prove that
the dominance reduction captures many other reduction rules, and
develop e�cient triangle maintenance-based techniques to incre-
mentally and iteratively apply the dominance reduction. Consider
a modified version of the graph in Figure 1 by removing v10 and
connecting v9 to v1, v5, v6, v7, v8. The minimum degree of the graph
is 3, and the reduction rules for handling degree-one and degree-
two vertices cannot be applied. Nevertheless, we show that v9 is
dominated by v5 and thus v9 can be removed from the graph; sub-
sequently, the remaining graph can be solved by LinearTime. A
summary of our four approaches is given in Table 1.

Finally, we extend our techniques to improve the accuracy of the
iterated local search technique ARW and also accelerate ARW and
its variants. As a byproduct, we are also able to deliver a tighter
upper bound than the existing ones to guide an exact computation.

Contributions. Our main contributions are summarized as follows.
• We develop a Reducing-Peeling framework for e�ciently

and e↵ectively computing an approximate maximum inde-
pendent set of a graph (Section 3.1).
• We design two baseline algorithms, BDOne (Section 3.2)

and BDTwo (Section 3.3), by applying the existing reduction
rules for handling degree-one and degree-two vertices.
• We propose a linear-time algorithm, LinearTime, based on

our newly designed reduction rules for e�ciently handling
degree-two vertices (Section 4).
• We devise a near-linear time algorithm, NearLinear, to fur-

ther improve the solution quality by proposing new e�cient
techniques such that we can iteratively and incrementally ap-
ply the dominance reduction in near-linear time (Section 5).
• We extend our techniques to accelerate the iterated local search

algorithm ARW (Section 6).
We conduct extensive empirical studies on large real and synthetic
graphs in Section 7. The results show that (i) even the baseline
algorithm BDOne computes a much larger independent set than
Greedy and DU. (ii) LinearTime has a similar running time as
BDOne but improves the independent set size. (iii) NearLinear fur-
ther improves the solution quality with a slightly increased running
time and can find near-maximum or even maximum independent
sets. (iv) By combining NearLinear with ARW, we also signifi-
cantly speed up ARW. Duo to space limits, proofs of lemmas and
theorems are presented in Section A.1 in Appendix.

Related Works. We categorize the related works as computing
independent sets/vertex covers, and computing cliques.
Computing Independent Sets/Vertex Covers. As discussed above,
exact exponential-time algorithms for computing a maximum in-
dependent set are studied in [1, 21, 38], approximation techniques
with accuracy guarantees are investigated in [7, 20, 25], and heuris-
tic algorithms without accuracy guarantees are developed in [2, 11,
19, 27, 28]. The existing techniques either are only able to output
independent sets of limited quality or take an excessive long time
to find a high-quality independent set. In this paper, we develop a
new Reducing-Peeling paradigm and propose e�cient techniques
such that we can compute a much higher quality independent set,
in linear or near-linear time, than the existing techniques.

The problems of enumerating maximal independent sets and com-
puting independent sets in a streaming environment are also studied
in [10] and [17], respectively. These techniques cannot be applied
since they only focus on theoretical complexities. Recently, com-
puting large independent sets in an I/O e�cient manner is also in-
vestigated in [30], which is included in our experiments.
Computing Cliques. The maximum clique problem, which is to
find a clique (i.e., every two vertices in it are connected by an edge)
of the maximum cardinality in a graph, is also an NP-hard prob-
lem. Exponential-time exact methods are designed in [31, 33, 35]
based on the branch-and-bound framework. Although the exact al-
gorithms can find the maximum clique, they take excessive long
running time; as a result, they can only process small graphs. On
the other hand, various approximation and heuristic algorithms [6,
9] have also been devised aiming to compute a good solution within
an acceptable running time. Recently, distributed maximum clique
computation and e�cient maximal clique enumeration are studied
in [37] and [12, 15], respectively. All these techniques cannot be
applied to our problem, even though computing independent sets
and computing cliques are theoretically equivalent; that is, I ✓ V
is an independent set of G = (V, E) if and only if it is a clique of
G = (V, E), where (u, v) 2 E if and only if (u, v) < E. This is
because the complement of a sparse graph is an extremely dense
graph of size O(n2), and in practice we are facing sparse graphs.

2. PRELIMINARY
In this paper, we focus on an unweighted undirected graph G =

(V, E) [24], where V is the set of vertices and E is the set of edges.
We denote the number of vertices, |V |, and the number of edges,
|E|, in G by n and m, respectively. Let (u, v) 2 E denote an edge be-
tween u and v; u (resp. v) is said to be connected to and a neighbor
of v (resp. u). The neighborhood (i.e., the set of neighbors) of u is
N(u) = {v 2 V | (u, v) 2 E}, and the degree of u is d(u) = |N(u)|. For
ease of presentation, we simply refer to an unweighted undirected
graph as a graph.

Given a vertex subset S ✓ V of a graph G = (V, E), we may
modify G based on two operations on S . (i) (Deletion) We use
G\S to denote the graph obtained from G by removing all vertices
of S and their associated edges. (ii) (Contraction) We use G/S to
denote the graph obtained from G by contracting all vertices of S
into a single supervertex. Specifically, we remove all vertices of S
from the graph and add a new vertex u0 into the graph, and there is
an edge between u0 and any remaining vertex u if and only if u is
previously connected to a vertex of S . We also use G [ {(u, v)} to
denote the graph obtained from G by adding edge (u, v).

Definition 2.1: A vertex subset I ✓ V of a graph G = (V, E) is an
independent set if for any two vertices u and v in I, there is no
edge between u and v in G; that is, (u, v) < E,8u, v 2 I.

The size of an independent set is the number of vertices in it. An
independent set I is a maximal independent set if there does not ex-
ist a superset I0 of I (i.e., I0 � I) such that I0 is also an independent
set. An independent set I of G is a maximum independent set if its
size is the largest among all independent sets of G, and this size
is called the independence number of G, denoted ↵(G). Note that,
the maximum independent set of G is not unique; that is, there may
exist several independent sets of G with size ↵(G).

For example, consider the graph in Figure 2. {v2, v6} is a maximal
independent set, {v1, v3, v4} is a maximum independent set, and the
independence number of the graph is 3.

Problem Statement. Given a graph G = (V, E), we study the prob-
lem of e�ciently computing a high-quality independent set of G.
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Figure 2: Example graph
Vertex Cover. A subset C ⇢ V of a graph G = (V, E) is a ver-
tex cover if every edge of E has at least one end-point in C. It is
well-known [34] that C ⇢ V is a (minimum) vertex cover of G if
and only if V\C is a (maximum) independent set of G. Thus, com-
puting a maximum independent set is equivalent to computing a
minimum vertex cover, and the techniques proposed in this paper
can be directly applied to compute a high-quality vertex cover.

Graph Representation. In this paper, we use adjacency arrays to
represent a graph. That is, we store the neighborhood of a vertex
consecutively in an array. Moreover, we store the adjacency arrays
of all vertices in a single large array, where a pointer is maintained
for each vertex to indicate the start position of its adjacency array.
Thus, a graph is represented by 2m + n integers in main memory.

2.1 Reduction Rules
The problem of computing a maximum independent set of a

graph is NP-hard [23]. Nevertheless, in view of the importance of
this problem, many techniques have been devised for accelerating
the computation of a maximum independent set [1] or for heuristi-
cally computing a large independent set by iteratively improving
the solution quality [19, 28]. Among them, applying reduction
rules have recently been found to be very promising. The main
reason is that applying reduction rules can (significantly) reduce
the graph instance while preserving the maximum independent set.

In this paper, we also make use of reduction rules. However,
applying the full set of reduction rules in [1] incurs significant pro-
cessing time [19]. Thus, we mainly focus on the simple reduction
rules that are designed for handling vertices of degree  2 and can
be applied e�ciently. Obviously, for a degree-zero vertex u, any
maximum independent set must include u. Thus, to include a vertex
u into an independent set, we can simply remove all its neighbors
(i.e., N(u)) from the graph to make it a degree-zero vertex. The re-
duction rules for handling degree-one and degree-two vertices are
illustrated by the following two lemmas, respectively.

Lemma 2.1: (Degree-one (Vertex) Reduction [21]) For a degree-
one vertex u in G with neighbor v, there exists a maximum inde-
pendent set of G that includes u; thus, we can remove v from G as
shown in Figure 3(a), and ↵(G) = ↵(G\{v}).

Lemma 2.2: (Degree-two (Vertex) Reductions) For a degree-two
vertex u in G = (V, E) with neighbors v and w:
(1) (Isolation [19]) (v,w) 2 E. There exists a maximum indepen-
dent set of G that includes u; thus, we can remove v and w from G
as shown in Figure 3(b), and ↵(G) = ↵(G\{v,w}).
(2) (Folding [21]) (v,w) < E. We have ↵(G) = ↵(G/{u, v,w}) + 1
and we contract {u, v,w} into a supervertex uvw as shown in Fig-
ure 3(c). Let I be a maximum independent set of G/{u, v,w}. If
uvw 2 I then (I\uvw) [ {v,w} is a maximum independent set of G,
otherwise I [ {u} is a maximum independent set of G.

For simplicity, we refer to the degree-one vertex reduction and
degree-two vertex reductions as degree-one reduction and degree-
two reductions, respectively. We also refer to the two sub-rules in
Lemma 2.2 as degree-two isolation and degree-two folding. We
say a vertex satisfies a reduction rule if the reduction rule can be

(a)
(b) (c)

u v

w

u

v

vw

u

u v

reduction

Degree-one

vw

u

uvw

Degree-two reductions

Figure 3: Degree-one and degree-two vertex reductions

applied on this vertex; for example, a vertex satisfies the degree-
one reduction if it is of degree one.

3. A NEW FRAMEWORK AND TWO BASE-
LINE SOLUTIONS

In this section, we develop a Reducing-Peeling framework for
computing a high-quality independent set of a graph in Section 3.1,
based on which we design two baseline algorithms in Sections 3.2
and 3.3, respectively.

3.1 The Reducing-Peeling Framework
Reduction rules were originally proposed in [21, 38] for reduc-

ing the time complexity of exact exponential-time algorithms in
theory. Recently, they are also found to be successful in accelerat-
ing exact exponential-time algorithms in practice [1] and in accel-
erating heuristic local search and evolutionary algorithms [19, 28].
We explain the reasons as follows. (1) Real networks are usually
power-law graphs such that the degree distribution follows a power-
law distribution [4]; that is, there are many low-degree vertices and
a few high-degree vertices. (2) Reduction rules can e↵ectively han-
dle low-degree vertices [19] (e.g., reduction rules in Lemmas 2.1
and 2.2) to reduce the graph size while preserving the maximality
of independent sets. Therefore, after iteratively applying reduction
rules until no rule can be applied, we usually will get a small result-
ing graph, which is called the kernel graph; this process is referred
to as kernelization. That is, the e↵ective size of the graph that needs
to be processed subsequently is significantly reduced.

However, there are two major issues that prevent the algorithms
in [1, 28] from running on large graphs. (i) Iteratively and repeat-
edly trying all the reduction rules on every vertex is time-consuming.
Note that, once the graph changes (i.e., one reduction rule is ap-
plied), the techniques in [1, 28] need to try all the reduction rules
on every vertex again (i.e., repeatedly). (ii) The kernel graph may
still be too large for a large input graph; thus, algorithms with high
time complexities still take an excessive long time to run on the
resulting kernel graph.

The Reducing-Peeling Framework. In this paper, we develop a
new framework to remedy the above issues. Firstly, we propose ef-
ficient techniques to incrementally apply reduction rules, which are
the main focuses of the following sections. Secondly, we propose
an e↵ective strategy to destroy the equilibrium of the current kernel
graph such that the reduction rules can be applied again. To do so,
we define the following inexact reduction rule.

Definition 3.1: (Inexact Reduction) Given a graph G, we remove/peel
the vertex with the highest degree from G.

The inexact reduction rule is designed based on the intuition that
high-degree vertices are less likely to be in a maximum indepen-
dent set [19]; for example, if a high-degree vertex is added into the



independent set, then all its neighbors, which are of a large quan-
tity, are ruled out from the independent set. Furthermore, removing
high-degree vertices from a graph sparsifies the graph [29]; that is,
given a kernel graph on which no reduction rule can be applied, it
is usually the case that we can apply the reduction rules again after
removing one or a few high-degree vertices.

We refer to the reduction rules in [1] as exact reduction rules to
distinguish them from the above inexact reduction rule. The exact
reduction rules preserve the optimal solution while the inexact re-
duction rule may not; that is, it is possible that ↵(G) , ↵(G\{u})
where u is the vertex with the highest degree in G. Consequently,
we apply the inexact reduction rule as few as possible.

Algorithm 1: Reducing-Peeling Framework
Input: A graph G = (V, E), and a set of exact reduction rules R
Output: A maximal independent set I in G

1 while G contains edges do
2 if a reduction rule in R can be applied on a vertex u then
3 Apply the exact reduction rule on u; /* Reducing */;
4 else Apply the inexact reduction rule; /* Peeling */;
5 I  the set of degree-zero vertices in G;
6 Extend I to be a maximal independent set;
7 return I;

We propose the Reducing-Peeling framework, shown in Algo-
rithm 1. We iteratively apply exact reduction rules (i.e., Reducing)
or the inexact reduction rule (i.e., Peeling) until the graph G con-
tains no edges (Lines 1–4), where the inexact reduction rule is ap-
plied only when the exact reduction rules can no longer be applied
on the current graph. The set I of degree-zero vertices is an inde-
pendent set (Line 5). Note that, I may not be a maximal indepen-
dent set, since it is possible that for a vertex that has been removed
by the inexact reduction rule, all its neighbors are not in I. Thus,
we extend I to be a maximal independent set (Line 6). That is, the
inexact reduction rule only temporarily removes the highest-degree
vertex, and the vertex may be added back to the independent set
later if none of its neighbors is in the independent set. As each
reduction rule will reduce the graph size by at least one vertex, Al-
gorithm 1 terminates after at most n iterations. Moreover, we can
report I to be a maximum independent set if the inexact reduction
rule is not applied during the algorithm execution.

Discussions. We discuss the novelty of our framework, an alterna-
tive inexact reduction rule, and applying the reduction rules in [1].
Novelty of Our Framework. Despite that the idea of removing high-
degree vertices is also considered in [19], our framework is novel in
the following aspects. Firstly, we apply the inexact reduction rule
(i.e., remove the highest-degree vertex) only when the exact reduc-
tion rules can no longer be applied (i.e., Reducing has a higher
priority than Peeling), while the techniques in [19] heuristically
remove a fixed portion (e.g., 1%) of the high-degree vertices. Sec-
ondly, after removing high-degree vertices, we apply the exact re-
duction rules again on the resulting graph, while the techniques
in [19] run local search on the resulting graph. Moreover, we de-
sign new reduction rules and propose e�cient techniques for incre-
mentally applying reduction rules in this paper.
Alternative Inexact Reduction. An alternative definition of the in-
exact reduction rule is adding the vertex with the minimum degree
into the independent set and removing all its neighbors. Actually,
DU is such an algorithm with this alternative definition, where R
is the degree-one reduction. However, this strategy does not work
well since a low-degree vertex has an equal probability to be in a

maximum independent set or not in. Our experiments in Section 7
show that the baseline algorithm within our framework by letting R
be the degree-one reduction finds significantly larger independent
sets than DU.
Applying the Reduction Rules and the Techniques in [1]. Within
our framework, an algorithm can be designed by letting R be the
full set of reduction rules in [1] and using the existing techniques
in [1] to apply the reduction rules. However, this is not a good
idea. Firstly, some of the reduction rules take a long time to ap-
ply (e.g., the unconfined reduction rule), and some of the reduction
rules may dynamically enlarge the neighborhood of a vertex; thus,
larger running time and memory space are consumed for applying
all the reduction rules (see Section 7). Secondly, e�cient tech-
niques for incrementally applying reduction rules are not studied.
Note that, the graph is dynamically changing after applying each
reduction rule. In [1], even if a reduction rule cannot be applied
on the current graph, it still needs to try the reduction rule on all
the vertices to confirm that it cannot be applied. As a result, the
techniques in [1] take an excessive long time to compute the kernel
graph as verified by our experiments in Section 7.

3.2 An Efficient Baseline Algorithm
Following the Reducing-Peeling framework, we propose an e�-

cient baseline algorithm for computing a high-quality independent
set in linear time by letting R be the degree-one reduction. The
pseudocode is shown in Algorithm 2, denoted BDOne. We first let
d(v) be the degree of v (Line 1), and let I, V=1, and V�2 be the sets of
vertices in G of degree zero, one, and at least two (Line 2), respec-
tively. Then, we go to iterations until both V=1 and V�2 are empty
(Lines 3–7); that is, the graph contains no edges. If the degree-
one reduction can be applied (i.e., V=1 , ;) on a vertex u, then
we remove the unique neighbor v of u from G by DeleteVertex
(Line 5). Otherwise, we apply the inexact reduction rule on the
highest-degree vertex by removing it from G (Line 7).

Algorithm 2: BDOne
Input: A graph G = (V, E)
Output: A maximal independent set I in G

1 for each v 2 V do d(v) the degree of v in G;
2 Let I,V=1, and V�2 be the sets of vertices in G of degree zero, one, and

at least two, respectively;
3 while V=1 , ; or V�2 , ; do
4 if V=1 , ; then
5 Delete from G the neighbor v of a vertex u 2 V=1 by invoking

DeleteVertex(v); /* Degree-one reduction */;
6 else
7 Delete from G the vertex u with the highest degree by

invoking DeleteVertex(u); /* Inexact reduction */;

8 Extend I to be a maximal independent set;
9 return I;

Procedure DeleteVertex(v)
10 for each neighbor w of v in G do
11 d(w) d(w) � 1; /* Remove edge (v,w) */;
12 if d(w) = 1 then Remove w from V�2 and add w into V=1;
13 else if d(w) = 0 then Remove w from V=1 and add w into I;
14 Remove v from G, V=1 and V�2;

The procedure DeleteVertex removes a vertex v from the graph
G and updates the three sets, I,V=1,V�2, accordingly. When remov-
ing a vertex from G, we also remove all its adjacent edges from G.
Thus, for each neighbor w of v, the degree d(w) of w reduces by 1
(Line 11). Moreover, if d(w) becomes 1, then we add w into V=1



and remove w from V�2 (Line 12); this is because d(w) must be 2
before the update. If d(w) becomes 0, then we add w into I and
remove w from V=1 (Line 13). Lastly, we also remove v from G,
V=1, and V�2 if it is in the corresponding set (Line 14).

Running Example. Consider the graph in Figure 2. After initial-
ization, V=1 = {v1} and V�2 = {v2, v3, v4, v5, v6}. In the first iteration
of the while loop (Lines 3–7 of Algorithm 2), we apply the degree-
one reduction on vertex v1 by removing its neighbor v2 from G;
thus, we have I = {v1}, V=1 = ; and V�2 = {v3, v4, v5, v6} with
d(v3) = d(v4) = 2 and d(v5) = d(v6) = 3. In the second iteration, as
the degree-one reduction cannot be applied, we apply the inexact
reduction by removing v6 from G; now, I = {v1}, V=1 = {v3, v4}, and
V�2 = {v5}. In the third iteration, we apply the degree-one reduc-
tion on vertex v3 by removing its neighbor v5 from G; we obtain
I = {v1, v3, v4} and the algorithm terminates since no edge exists.

Analysis and Implementation Details. Algorithm 2 runs in lin-
ear time (i.e., O(m)) as follows. Firstly, Lines 1–2 take O(m) time.
Secondly, all the degree-one reductions run in O(m) total time since
DeleteVertex for a vertex v takes d(v) time. For time-e�ciency
consideration, we mark a vertex as deleted rather than actually
deleting it from G. Thus, the representation of the input graph re-
mains unchanged during the execution of the algorithm, and the
space complexity of Algorithm 2 is 2m + O(n) by the graph repre-
sentation in Section 2.

Next, we show that retrieving the vertex with the highest degree
at Line 7 can be implemented in O(m) total time for all such oper-
ations, where vertex degree dynamically changes (e.g., at Line 11).
The bin-sort [18] like data structure in [13] can be used for this pur-
pose based on the fact that the degrees are integers in the range of
1 to n. The data structure has n bins, one for each distinct degree
value; bin i consists of a doubly-linked list linking together all ver-
tices of degree i. Updating a vertex’s degree in the data structure
can be accomplished in O(1) time by removing it from one doubly-
linked list and adding it to another. The total n operations of re-
trieving the vertex with the highest degree can be achieved in O(n)
time by maintaining the highest degree of the remaining vertices,
which is non-increasing. Furthermore, to improve the practical e�-
ciency, we propose to update a vertex’s degree in the data structure
lazily (i.e., only when it is going to be chosen as the vertex with the
highest degree at Line 7), since the degree of a vertex can only de-
crease. As a result, singly-linked lists, which consumes 2n space,
rather than doubly-linked lists are su�cient in the data structure;
moreover, the number of update operations of the data structure is
significantly reduced in practice.

3.3 An Effective Baseline Algorithm
We also propose an e↵ective baseline algorithm by letting R be

the degree-one reduction and the degree-two reductions; intuitively
it can find a larger independent set than BDOne as a result of apply-
ing more exact reduction rules. The pseudocode is shown in Algo-
rithm 3, denoted BDTwo. We first invoke Initialization (Lines 9–10)
to initialize I,V=1,V=2 and V�3, similar to the initialization in Al-
gorithm 2. Then, we go to iterations (Lines 3–5) until the graph
contains no edges. In an iteration, if V=1 is not empty, then we ap-
ply the degree-one reduction (Line 11); if V=1 is empty but V=2 is
not empty, then we apply the degree-two reduction (Lines 12–15);
otherwise, we apply the inexact reduction (Line 16).

The procedure DegreeTwo-Reduction follows Lemma 2.2. If
there is an edge between the two neighbors v and w of u (i.e.,
degree-two isolation), then we remove v and w from the graph
(Lines 13–14). Otherwise, we apply degree-two folding by con-
tracting {u, v,w} which is equivalent to first removing u and then

Algorithm 3: BDTwo
Input: A graph G = (V, E)
Output: A maximal independent set I in G

1 Initialization();
2 while V=1 , ; or V=2 , ; or V�3 , ; do
3 if V=1 , ; then DegreeOne-Reduction();
4 else if V=2 , ; then DegreeTwo-Reduction();
5 else Inexact-Reduction();
6 Backtrack the contraction operations to get the correct I;
7 Extend I to be a maximal independent set;
8 return I;

Procedure Initialization()
9 for each v 2 V do d(v) the degree of v in G;

10 Let I,V=1,V=2, and V�3 be the sets of vertices in G of degree zero,
one, two, and at least three, respectively;

Procedure DegreeOne-Reduction()
11 Delete from G the neighbor v of a vertex u 2 V=1 by invoking

DeleteVertex(v);

Procedure DegreeTwo-Reduction()
12 Let v,w be the two neighbors of a vertex u 2 V=2;
13 if there is an edge between v and w in G then
14 Delete vertices v and w by invoking DeleteVertex(v) and

DeleteVertex(w); /* Degree-two isolation */;
15 else DeleteVertex(u); Contract(v,w); /* Degree-two folding */;

Procedure Inexact-Reduction()
16 Delete from G the vertex u with the highest degree by invoking

DeleteVertex(u);

Procedure DeleteVertex(v)
17 for each neighbor w of v in G do
18 d(w) d(w) � 1; /* Remove edge (v,w) */;
19 if d(w) = 2 then Remove w from V�3 and add w into V=2;
20 else if d(w) = 1 then Remove w from V=2 and add w into V=1;
21 else if d(w) = 0 then Remove w from V=1 and add w into I;
22 Remove v from G, V=1, V=2, and V�3;

Procedure Contract(v,w)
23 Add edges, if not previously exist, between w and neighbors of v;
24 Update w to be in the correct set, V=1, V=2, or V�3;
25 Remove v from G, V=1, V=2, and V�3;

contracting {v,w} (Line 15). Note that, to obtain the actual inde-
pendent set, we also need to backtrack the contraction operations
by following Lemma 2.2 (Line 6).

Running Example. Reconsider the graph in Figure 2. After initial-
ization, I = ;, V=1 = {v1}, V=2 = ;, and V�3 = {v2, v3, v4, v5, v6}. In
the first iteration of the while loop (i.e., Lines 3–5 of Algorithm 3),
we apply the degree-one reduction on v1, and we obtain I = {v1},
V=1 = ;, V=2 = {v3, v4}, and V�3 = {v5, v6}. In the second iteration,
we apply the degree-two reduction on vertex v3; as there is an edge
between the two neighbors v5 and v6 of v3, we remove v5 and v6
from G and obtain I = {v1, v3, v4}, V=1 = V=2 = V�3 = ;. The al-
gorithm terminates. Here, we can report {v1, v3, v4} as a maximum
independent set since the inexact reduction rule is not applied.

Analysis and Implementation Details. While it is easy to obtain
an upper bound of the time complexity of BDTwo as O(n ⇥ m), it
is hard to give a tighter analysis of the time complexity of BDTwo.
We prove in the following theorem that it is bounded below by
⌦(m + n log n). Thus, BDTwo is not a linear-time algorithm.

Theorem 3.1: The time complexity of Algorithm 3 is⌦(m+n log n).
Due to the contraction operation, the neighborhood size (i.e., de-

gree) of a vertex may increase in BDTwo (e.g., Line 23). Thus, we
need the bin-sort like data structure discussed in Section 3.2 to be



implemented as doubly-linked lists. Moreover, we need a graph
representation that supports dynamically enlarging the neighbor-
hood of a vertex. The graph representation discussed in Section 2
does not support this operation. As a result, we represent the graph
in BDTwo as adjacency lists, where the two directions of each edge
have mutual references, and this representation consumes 6m + n
space. Therefore, the space complexity of BDTwo is 6m + O(n),
which is also larger than that of BDOne.

4. AN EFFECTIVE LINEAR-TIME ALGO-
RITHM

BDTwo, as a result of additionally applying the degree-two re-
ductions, is more e↵ective (i.e., can find a larger independent set)
but has higher time and space complexities than BDOne. In this
section, we propose degree-two path reductions to e�ciently han-
dle degree-two vertices and to remedy the deficiencies of BDTwo.

Degree-two Path Reductions. We propose new reduction rules for
degree-two vertices in terms of degree-two paths.

Definition 4.1: A path P of G is a degree-two path if every vertex
of P has degree two in G. A cycle C of G is a degree-two cycle if
every vertex of C has degree two in G.

A degree-two path P is maximal if it is not a subpath of any
other degree-two paths. Given a graph with minimum degree two,
a degree-two path P is maximal if and only if the two vertices that
are adjacent to the two end-points of P but are not in P have degree
at least three. It is easy to see that every degree-two vertex is either
in a degree-two cycle or in a maximal degree-two path, and more-
over, the degree-two cycles and maximal degree-two paths form a
partition of the set of all degree-two vertices. To e�ciently handle
degree-two vertices, we have the following lemma.
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Figure 4: Degree-two path reductions

Lemma 4.1: (Degree-two Path Reductions) Consider a graph
G = (V, E) with minimum degree two. For a degree-two cycle C
in G and an arbitrary vertex v 2 C, there exists a maximum inde-
pendent set of G that excludes v. Thus, we can remove v from G as
shown in Figure 4(a) (here, we ignore the edge connecting v to the
other part of G) and ↵(G) = ↵(G\{v}).

For a maximal degree-two path P = (v1, v2, . . . , vl), let v < P and
w < P be the unique vertices connected to v1 and vl, respectively.
Denote the number of vertices in P by l = |P|. There are five cases.
(1) v = w. There exists a maximum independent set of G that ex-
cludes v; thus, we can remove v from G as shown in Figure 4(a)
and ↵(G) = ↵(G\{v}). In the following cases, we assume v , w.
(2) |P| is odd and (v,w) 2 E. There exists a maximum independent
set of G that excludes v and w; thus, we can remove v and w from
G as shown in Figure 4(b) and ↵(G) = ↵(G\{v,w}).

Algorithm 4: LinearTime
Input: A graph G = (V, E)
Output: A maximal independent set I in G

1 Initialization();
2 Initialize a stack S to be empty;
3 while V=1 , ; or V=2 , ; or V�3 , ; do
4 if V=1 , ; then DegreeOne-Reduction();
5 else if V=2 , ; then DegreeTwoPath-Reduction();
6 else Inexact-Reduction();
7 Iteratively pop a vertex u from the stack S , and add u to I if none of its

neighbors is in I;
8 Extend I to be a maximal independent set;
9 return I;

Procedure DegreeTwoPath-Reduction()
10 u a vertex in V=2;
11 Find the maximal degree-two path/cycle P = (v1, . . . , vl) containing u;
12 if P is a cycle then DeleteVertex(u);
13 else
14 Let v,w < P be the two vertices connected to v1, vl, respectively;
15 if v = w then DeleteVertex(v); /* Fig. 4(a) */;
16 else if the number of vertices in P is odd then
17 if there is an edge between v and w in G then
18 DeleteVertex(v); DeleteVertex(w); /* Fig. 4(b) */;
19 else
20 Remove all vertices except v1 of P from G, remove all

vertices of P from V=2, and add an edge between v1 and
w; /* Fig. 4(c) */;

21 Push vertices vl, . . . , v2, obeying the order, into S ;

22 else
23 Remove all vertices of P from G and V=2, and add an edge, if

not exist, between v and w; /* Figs. 4(d) and 4(e) */;
24 Push vertices vl, . . . , v1, obeying the order, into S ;

(3) |P| is odd and (v,w) < E. There exists a maximum independent
set of G that excludes either v1 or w and includes half of the vertices
{v2, · · · , vl}; thus, we can remove {v2, . . . , vl} from G and add edge
(v1,w) as shown in Figure 4(c), and ↵(G) = ↵(G\{v2, . . . , vl} [
{(v1,w)}) + |P|�1

2 .
(4) |P| is even and (v,w) 2 E. There exists a maximum independent
set of G that excludes either v or w and includes half of the vertices
{v1, · · · , vl}; thus, we can remove {v1, . . . , vl} from G as shown in
Figure 4(d), and ↵(G) = ↵(G\{v1, . . . , vl}) + |P|2 .
(5) |P| is even and (v,w) < E. There exists a maximum independent
set of G that excludes either v or w and includes half of the ver-
tices {v1, · · · , vl}; thus, we can remove {v1, . . . , vl} from G and add
edge (v,w) as shown in Figure 4(e), and ↵(G) = ↵(G\{v1, . . . , vl} [
{(v,w)}) + |P|2 .

Note that, in case-3, case-4, and case-5 of Lemma 4.1, we first
compute the maximum independent set I0 of G\{v2, · · · , vl}[{(v1,w)},
G\{v1, · · · , vl}, and G\{v1, · · · , vl} [ {(v,w)}, respectively, and then
extend I0 by including a proper subset of vertices from {v1, · · · , vl},
to get the maximum independent set of G. The subset of vertices
in {v1, · · · , vl} that will be included to extend I0 is determined by
the vertices already in I0. A comparison between our degree-two
path reductions and the existing degree-two vertex reductions is
discussed in Section A.2 in Appendix.

The Algorithm LinearTime. Following the framework in Algo-
rithm 1 and by letting R be the degree-one reduction and degree-
two path reductions, we propose an e↵ective linear-time algorithm
for computing a large independent set of G. The pseudocode is
shown in Algorithm 4, denoted LinearTime. The algorithm is simi-



lar to Algorithm 3, but we use the degree-two path reductions rather
than the degree-two vertex reductions.

The degree-two path reductions are conducted at Lines 10–24.
We first get an arbitrary degree-two vertex u from V=2 (Line 10),
and find the maximal degree-two path/cycle P = (v1, . . . , vl) con-
taining u (Line 11). Then, we process P by following Lemma 4.1.
If P is a cycle, then we remove u from G (Line 12); note that,
the remaining vertices of P will all be iteratively processed by the
degree-one reduction before processing the remaining part of G.
Otherwise, P is a path, we process vertices of P in five cases. Let
v < P and w < P be the two vertices connected to v1 and vl, re-
spectively (Line 14). (1) If v = w, we remove v from G (Line 15)
and then other vertices of P will be iteratively processed by the
degree-one reduction. (2) If |P| is odd and (v,w) 2 E, we remove
v and w from G (Line 17–18) and then other vertices of P will be
iteratively processed by the degree-one reduction. (3) If |P| is odd
and (v,w) < E, we construct the graph G0 by removing all vertices
except v1 of P from G and adding edge (v1,w) to G (Line 20). We
will first compute an independent set I0 of G0, and then add alter-
nating vertices of P\{v1} to I0 to obtain an independent set of G; the
decision of adding which vertices from P\v1 to I0 is postponed to
the end of the algorithm (Line 7) by pushing all vertices, vl, . . . , v2,
into a stack S (Line 21). Note that, in order to correctly put half of
the vertices vl, . . . , v2 into the independent set I at Line 7, we need
to push these vertices into the stack S by obeying this order. Simi-
larly, we process the two cases for P being even at Lines 23–24.

v2

v4 v5v1 v10 v9

v8v7v6v3
Figure 5: Example graph for LinearTime

Running Example. Consider the graph in Figure 5. After ini-
tialization, we have I = ;,V=1 = ;,V=2 = {v1, v2, v3, v6}, and
V�3 = {v4, v5, v7, v8, v9, v10}. In the first iteration of the while loop
(i.e., Lines 4–6 of Algorithm 4), we apply the degree-two path re-
duction on v1. The maximal degree-two path is P = (v1, v2, v3), and
the neighbors of v1 and v3 that are not in P are v = w = v4. Thus, we
remove v4 from G (Line 15), and obtain I = ;,V=1 = {v1, v3},V=2 =
{v2, v5, v6} and V�3 = {v7, v8, v9, v10}. In the second iteration, we ap-
ply the degree-one reduction on v1. We remove the unique neighbor
v2 of v1 from G, and obtain I = {v1, v3},V=1 = ;,V=2 = {v5, v6} and
V�3 = {v7, v8, v9, v10}. In the third iteration of the while loop, we
apply the degree-two path reduction on v5; P = (v5, v6), v = v10,
w = v7. As (v,w) < E and |P| = 2, we push v6, v5 into the
stack S , remove v5, v6 from G and add edge (v10, v7) into G. We
obtain I = {v1, v3},V=1 = ;,V=2 = ;,V�3 = {v7, v8, v9, v10} and
S = {v5, v6}, and G is a clique of {v7, v8, v9, v10}. Now, assume we
add v10 of the four-vertex clique to I, G contains no edges. We pro-
cess the vertices in the stack S . Firstly, as the neighbor v10 of v5 is in
I, v5 cannot be added to I; secondly, as none of v6’s neighbors is in
I, we add v6 to I. Finally, we obtain the maximum independent set
I = {v1, v3, v10, v6} of the graph in Figure 5. A detailed illustration
of the above process is given in Figure 12 in the Appendix.

Analysis and Implementation Details. We show that LinearTime
runs in linear time (i.e., O(m)) as follows. Firstly, similar to BDOne
in Section 3.2, we use the lazy update strategy and use singly-linked
lists in the bin-sort like data structure. Secondly, instead of insert-
ing a new edge (v,w) into G at Lines 20,23 (corresponding to Fig-
ure 4(c)(e)), we modify the adjacent edge (w, vl) of w to be (w, v)

and modify the adjacent edge (v, vl) of v to be (v,w); in this way,
the neighborhood size of a vertex will not increase during the al-
gorithm execution, and thus we can use the graph representation
in Section 2. Thirdly, each time of applying the degree-two path re-
duction, we reduce the graph size by removing � 2(|P|�1) directed
edges in 2|P| time with |P| � 2; the maximal degree-two path P con-
taining a vertex u can be found by conducting a depth-first search
from u by visiting only vertices of degree two, which runs in linear
time to the number of vertices in P. Thus, the total running time of
applying degree-two path reductions is bounded by 2m. Note that,
if a vertex forms a maximal degree-two path itself (i.e., |P| = 1),
we only check this once. Fourthly, in Algorithm 4, we also need
to check whether there is an edge between v and w, which can be
achieved in constant time by constructing a hash structure on all the
edges. In practice, we iterate through the neighborhood of v, rather
than building a hash structure, for checking whether w is a neighbor
of v. Thus, the space complexity of LinearTime is 2m + O(n).

5. A NEAR-LINEAR-TIME ALGORITHM
In this section, we propose e�cient techniques to incrementally

apply more reduction rules such that we can find near-maximum
independent sets in near-linear time.

Incrementally Applying The Dominance Reduction. Besides the
reduction rules designed specifically for handling degree-one and
degree-two vertices, there are also other reduction rules studied
in [1, 21, 38] for handling vertices of arbitrary degree that satisfy
some properties, e.g., the dominance reduction.

Lemma 5.1: (Dominance Reduction) [21] Vertex v dominates
vertex u if (v, u) 2 E and all neighbors of v other than u are also
connected to u (i.e., N(v)\{u} ✓ N(u)). If v dominates u, then there
exists a maximum independent set of G that excludes u; thus, we
can remove u from G as shown in Figure 6, and ↵(G) = ↵(G\{u}).
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Figure 6: Dominance reduction

We prove some important properties of the dominance reduction
in Section A.3 in Appendix. For example, the dominance reduc-
tion captures the isolated vertex reduction [19] which includes the
degree-one reduction and the degree-two isolation as special cases,
and it can also handle two of the four cases for a degree-three ver-
tex. In view of the importance of the dominance reduction, we
propose e�cient techniques to incrementally apply the dominance
reduction, based on triangle counts as shown in the lemma below.

Lemma 5.2: Given a graph G, a vertex u dominates its neighbor v
if and only if �(u, v) = d(u)�1, where �(u, v) denotes the number of
triangles in G containing u and v and is called the triangle count
of edge (u, v).

Following Lemma 5.2, checking whether u dominates its neigh-
bor v can be e�ciently conducted by comparing �(u, v) with d(u)�
1. Therefore, we propose to maintain a triangle count �(u, v) for
each edge (u, v) in G, and thus the dominance relationship between
two adjacent vertices u and v can be checked in constant time after
each updating of either �(u, v) or d(u) or d(v). Recall that, the graph
G changes each time after applying a reduction rule.



Algorithm 5: NearLinear
Input: A graph G = (V, E)
Output: A maximal independent set I in G

1 Initialization();
2 Initialize a stack S to be empty;
3 Compute a triangle count �(u, v) for every edge (u, v) in G;
4 D {u 2 V | 9(v, u) 2 E s.t. �(v, u) = d(v) � 1}; /* D is the
dynamically maintained set of dominated vertices */;

5 while V=2 , ; or D , ; or V�3 , ; do
6 if V=2 , ; then DegreeTwoPath-Reduction();
7 else if D , ; then
8 Pop a vertex u from D and remove u from G if u is dominated

by one of its neighbors; /* Dominance reduction */;
9 else Inexact-Reduction();

10 Iteratively pop a vertex u from the stack S , and add u to I if none of its
neighbors is in I;

11 Extend I to be a maximal independent set;
12 return I;

The Algorithm NearLinear. Following the framework in Algo-
rithm 1 and by letting R be the degree-two path reductions and
the dominance reduction, we propose a near-linear time algorithm
for computing a near-maximum independent set. Recall that, the
degree-one reduction is captured by the dominance reduction; thus,
we do not include the degree-one reduction intoR. The pseudocode
is shown in Algorithm 5, denoted NearLinear. Firstly, we do the
initialization (Lines 1–2) same as that in Algorithm 4, compute a
triangle count �(u, v) for every edge (u, v) in G (Line 3), and main-
tain in D the set of dominated vertices (Line 4); a vertex is put into
D if it is dominated by one of its neighbors. Then, we go to iter-
ations (Lines 6–9) to reduce the graph until it contains no edges.
In an iteration, we first try the degree-two path reductions (Line 6),
then try the dominance reduction (Line 7–8), and lastly apply the
inexact reduction (Line 9) if neither of the two exact reductions can
be applied. One thing to notice is that before removing a vertex
u 2 D from G, we need to check whether it is still dominated by
one of its neighbors in the current graph (Line 8). This is because,
two vertices u and v can mutually dominate each other as discussed
in Section A.3 in Appendix, and it is possible that, after removing
u that dominates v, v is no longer dominated by any vertex in the
resulting graph. As the order of removing dominated vertices in D
from the graph does not matter as discussed in Section A.3 in Ap-
pendix, all dominated vertices will be removed from the graph by
the algorithm.

When removing a vertex from G, we also need to maintain the
triangle counts for edges and maintain the set D of dominated ver-
tices. It is easy to see that, when deleting u, only the edges that form
triangles with u will have their triangle counts changed (i.e., de-
crease by 1), and moreover, only the two-hop neighbors (i.e., neigh-
bors of neighbors) of u may change from not dominated to domi-
nated vertices. For example, consider the neighbor w of v 2 N(u),
if w 2 N(u), then d(v), d(w) and �(v,w) all decrease by the same
amount 1; otherwise, w is a two-hop neighbor of u and w may be-
come dominated by v since d(v) decreases by 1 while �(v,w) re-
mains the same. Note that, in DegreeTwoPath-Reduction, we also
need to maintain the triangle counts and the set D of dominated
vertices, as follows. For the case corresponding to Figure 4(c), we
only need to set �(w, v1) to be 0. For the case corresponding to
Figure 4(d), since the degrees of w and v decrease by 1 while the
triangle counts of all edges remain the same, w and v may domi-
nate their neighbors after the update. For the case corresponding to
Figure 4(e), for each common neighbor u of v and w, we increase
�(u, v) and �(u,w) by 1 while the degrees of all vertices remain the

same; thus, u may dominate v or w, and v or w may dominate w,
after the update. We omit the details and the pseudocode.

Analysis and Implementation Details. The time complexity of
Algorithm 5 is O(m ⇥ �), where � is the maximum vertex degree
in G. The most time-consuming parts of Algorithm 5 are related
to the computation and maintenance of triangle counts, and the
maintenance of the set D of dominated vertices; note that, the re-
maining part is similar to Algorithm 4 and has a time complex-
ity of O(m). Firstly, Line 3 takes time O

⇣P
(u,v)2E(d(u) + d(v))

⌘
=

O
⇣P

(u,v)2E �
⌘
= O(m ⇥ �), where the triangle count of edge (u, v)

is computed by intersecting N(u) and N(v). Secondly, updating
the traingle counts and the set D of dominated vertices for all ver-
tex removals also takes O(m ⇥ �) time in total. Thirdly, recheck-
ing the dominance at Line 8 takes O

⇣P
u2V d(u)2

⌘
= O(m ⇥ �) to-

tal time, since each vertex u is checked at most d(u) times each
of which takes O(d(u)) time. Fourthly, for case-4 and case-5 in
DegreeTwoPath-Reduction (corresponding to Figure 4(d) and 4(e)),
each updating of �(u, v) and D takes O(d(w)+d(v)) time. Note that,
this happens at most n/2 times since the number of vertices reduces
by at least two each time; thus, the total time is O(n ⇥ �).

As the time complexity of Algorithm 5 depends on �, in our im-
plementation of NearLinear, we first run an e�cient one-pass dom-
inance reduction to reduce �. The intuition is that a high-degree
vertex is most likely to be dominated by some low-degree vertices;
thus, these dominated vertices can be removed from the graph,
which reduces � without a↵ecting the optimal solution size. The
one-pass dominance reduction works as follows. We first sort the
vertices in degree-decreasing order in linear time by count sort [18],
and then apply the dominance reduction for vertices according to
this order. When checking whether u is dominated by one of its
neighbors, (1) we only need to consider a neighbor v if d(v) 
d(u), and (2) we can conclude that u is not dominated by v once
we encounter a neighbor w of v that is not connected to u. In
this way, the time complexity of the one-pass dominance reduc-
tion is O

⇣P
(u,v)2E min{d(u), d(v)}

⌘
= O(m ⇥ a(G)) [16], where a(G)

is the arboricity of G—the minimum number of forests needed to
cover all edges of G—with a(G)  pm and a(G)  �. More-
over, to further reduce the graph size, we also run once the linear-
programming based reduction studied in [1], after running the one-
pass dominance reduction; this has a time complexity of O(m⇥pn).
In practice, both the one-pass dominance reduction and the linear-
programming based reduction run in linear time for real graphs.

The worst-case space complexity of NearLinear is 4m + O(n),
since we also need to store a triangle count for each edge. However,
in practice it can be achieved in 2m+O(n) space, the same as that of
BDOne. This is because the number of undirected edges, after run-
ning the one-pass dominance reduction and the linear-programming
based reduction, is usually smaller than m

2 ; thus, all remaining
edges and their triangle counts can be stored in 2m space.

6. EXTENSIONS
In this section, we extend our techniques in two ways: accelerat-

ing ARW, and computing an upper bound of ↵(G).

Accelerating the Iterated Local Search Algorithm ARW. Our
techniques can be extended to accelerate the iterated local search
algorithm ARW, where details of ARW are given in Section A.5 in
Appendix. Let K be the kernel graph obtained immediately before
applying the inexact reduction rule for the first time, and let I(K)
be the independent set of I induced onK . Then, we run ARW onK
based on the initial independent set I(K) to iteratively improve the
size of the independent set, and finally extend the best independent



set obtained forK to an independent set of the original input graph.
We denote the extensions based on LinearTime and NearLinear as
ARW-LT and ARW-NL, respectively.

ARW-LT and ARW-NL di↵er from OnlineMIS [19] in the fol-
lowing aspects. (1) The kernel graph of ARW-NL is smaller than
that of OnlineMIS. OnlineMIS applies only the degree-one reduc-
tion and degree-two isolation in view of the ine�ciency of apply-
ing other reduction rules [19], while ARW-NL applies more reduc-
tion rules based on our newly designed reduction rules and our
techniques for e�ciently and incrementally applying the reduction
rules. (2) The initial independent set of ARW-NL is much larger
than that of OnlineMIS (see Section 7). OnlineMIS computes the
initial solution by first performing a quick single pass of the degree-
one reduction and degree-two isolation, and then invoking DU on
the remaining graph, while ARW-NL computes the initial solution
by our new algorithm NearLinear.

Computing Upper Bound. Each of our algorithms following the
Reducing-Peeling framework directly computes a nontrivial upper
bound of the independence number of a graph (i.e., upper bound
of ↵(G)). Let I be the computed independent set, F be the set of
vertices that are temporarily removed by the inexact reduction rule,
and R be the subset of vertices in F that are not in I (i.e., R = F\I).
We prove in Theorem 6.1 that, |I| + |R| is an upper bound of ↵(G).

Theorem 6.1: ↵(G)  |I| + |R|.
From Theorem 6.1, it is obvious that if R = ;, then I is a max-

imum independent set of G, since ↵(G) � |I|. As R ✓ F, this is
stronger than the statement claimed in Section 3.1, which says that
if the inexact reduction rule is not applied (i.e., F = ;), then I is a
maximum independent set of G.

7. EXPERIMENTS
We conduct extensive empirical studies to evaluate the e�ciency

and e↵ectiveness of our new framework and algorithms for comput-
ing a high-quality independent set of a graph. Firstly, we evaluate
the following algorithms that have polynomial time complexities.
• Greedy: the existing greedy algorithm (see Section 1).
• DU: the existing dynamic updating algorithm (see Section 1).
• SemiE: the semi-external algorithm in [30] with two-k swap;

we store the entire graph in main memory to avoid I/Os.
• BDOne: our e�cient baseline algorithm (see Section 3.2).
• BDTwo: our e↵ective baseline algorithm (see Section 3.3).
• LinearTime: our e↵ective linear-time algorithm (see Sec-

tion 4).
• NearLinear: our near-linear-time algorithm (see Section 5).

Secondly, we evaluate the following local search and evolutionary
algorithms.
• ARW: the local search algorithm in [2], initialized by DU.
• OnlineMIS: the improved local search algorithm in [19].
• ReduMIS: the evolutionary algorithm in [28].
• ARW-LT: the ARW algorithm boosted by LinearTime (see

Section 6).
• ARW-NL: the ARW algorithm boosted by NearLinear (see

Section 6).
All algorithms are implemented in C++ and compiled by GNU

GCC 4.8.2 with the -O3 optimization; the source code of ReduMIS
is obtained from the authors of [28] while all other algorithms are
implemented by us. All experiments are conducted on a machine
with an Intel(R) Xeon(R) 3.4GHz CPU and 16GB main memory
running Linux (64bit Debian). We evaluate the performance of the
algorithms on real graphs as follows.

Graph #Vertices #Edges d
GrQc 5,242 14,484 5.53

CondMat 23,133 93,439 8.08
AstroPh 18,772 198,050 21.10
Email 265,214 364,481 2.75

Epinions 75,879 405,740 10.69
cnr-2000 325,557 2,738,969 16.83

dblp 933,258 3,353,618 7.19
wiki-Talk 2,394,385 4,659,565 3.89
BerkStan 685,230 6,649,470 19.41
as-Skitter 1,696,415 11,095,398 13.08
in-2004 1,382,870 13,591,473 19.66
eu-2005 862,664 16,138,468 37.42

soc-pokec 1,632,803 22,301,964 27.32
LiveJ 4,847,571 42,851,237 17.68

hollywood 1,985,306 114,492,816 115.34
indochina 7,414,768 150,984,819 40.73
uk-2002 18,484,117 261,787,258 28.33
uk-2005 39,454,746 783,027,125 39.70
webbase 115,657,290 854,809,761 14.78
it-2004 41,290,682 1,027,474,947 49.77

Table 2: Statistics of real graphs (d: average degree)

Real Graphs. We evaluate the algorithms on twenty real graphs
from di↵erent domains. The graphs are downloaded from the Stan-
ford Network Analysis Platform1 and the Laboratory of Web Al-
gorithmics2; descriptions of these graphs can also be found there.
Statistics of these graphs are shown in Table 2, where the last col-
umn gives the average degree d. The graphs in Table 2 are sorted
in increasing order regarding the number of edges.

Evaluation Metrics. We evaluate the di↵erent algorithms from
three aspects: independent set size, processing time, and memory
usage. Firstly, the larger the independent set outputted by an algo-
rithm, the better the algorithm. Secondly, for the processing time,
the smaller the better; we run an algorithm three times and report
the average CPU time. Thirdly, the smaller memory consumed by
an algorithm the better; we measure the heap memory usage by the
Linux command memusage3.

7.1 Experimental Results
In order to see how far is the computed independent set to a max-

imum independent set for an input graph, we also obtain the source
code of VCSolver from the authors of [1] which computes a max-
imum independent set but with exponential worst-case time com-
plexity. We categorize the twenty graphs in Table 2 into easy in-
stances and hard instances, where the easy instances are the graphs
that VCSolver can finish in five hours and are shown in Table 3.
Note that, additional experimental results, e.g., on synthetic graphs,
are presented in Section A.4 in Appendix.

Eval-I: Evaluating Our Baseline Algorithm BDOne Against the
Existing Polynomial-Time Algorithms Greedy, DU and SemiE.
We first evaluate the e↵ectiveness of our Reducing-Peeling frame-
work against the existing techniques; thus, we consider our base-
line algorithm BDOne. The gaps/errors of the reported indepen-
dent set sizes by the four algorithms to the independence num-
ber computed by VCSolver [1] for the twelve easy real graphs are
shown in the third-to-sixth columns of Table 3. DU has a smaller
gap than Greedy thanks to the adaptive selection of the minimum-
degree vertex in DU, and SemiE improves upon Greedy as a re-
sult of one-k swaps and two-k swaps in SemiE. Note that, SemiE
first computes an initial independent set by Greedy, and then itera-

1http://snap.stanford.edu/
2http://law.di.unimi.it/datasets.php
3http://man7.org/linux/man-pages/man1/memusage.1.html



Graphs Independence Gap to the Independence Number Accuracy Kernel Graph Size
Number Greedy DU SemiE BDOne BDTwo LinearTime NearLinear of NearLinear by NearLinear

GrQc 2,459 5 1 1 0 0 0 0⇤ 100% 0
CondMat 9,612 17 5 1 4 2 1 0⇤ 100% 0
AstroPh 6,760 24 10 1 2 0 1 0⇤ 100% 0
Email 246,898 76 0 1 0 0⇤ 0 0⇤ 100% 0

Epinions 53,599 170 3 14 0 0 0 0 100% 6
dblp 434,289 484 63 53 45 5 4 0⇤ 100% 0

wiki-Talk 2,338,222 536 0 14 0 0 0 0⇤ 100% 0
BerkStan 408,482 11,092 3,000 4,458 1,088 385 766 428 99.895% 55,990
as-Skitter 1,170,580 34,591 2,336 5,886 319 55 170 39 99.997% 9,733
in-2004 896,724 14,832 3,553 5,918 656 351 412 57 99.993% 19,575
LiveJ 2,631,903 32,997 6,138 7,364 1,494 343 378 33 99.998% 10,173

hollywood 327,949 98 45 8 16 4 4 0⇤ 100% 0

Table 3: The gap of the reported independent set size to the independence number computed by VCSolver [1] (* denotes that the independent
set is reported as a maximum independent set by our algorithms)

tively improves the independent set size by one-k swaps and two-k
swaps [30]. BDOne consistently has a smaller gap than Greedy
and DU across all the twelve graphs, and has a smaller gap than
SemiE on most of the graphs. This demonstrates the superiority of
our Reducing-Peeling framework to the existing paradigms.
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Figure 7: Time and space of Greedy, DU, SemiE and BDOne

The processing time and memory usage of the algorithms on
the twelve easy real graphs are shown in Figure 7. Generally, the
processing time and memory usage of all four algorithms increase
along with the increasing of the graph size. Regarding the process-
ing time in Figure 7(a), Greedy runs the fastest due to its simplicity,
BDOne runs faster than DU as a result of our lazy updating strategy
of the data structure (see Section 3.2), and SemiE runs the slowest
due to the time-consuming two-k swaps. Regarding the memory
usage in Figure 7(b), all the four algorithms consume similar mem-
ory spaces. Thus, BDOne computes much larger independent sets
without sacrificing processing time or memory usage.

Eval-II: Evaluating Our Algorithms, BDOne, BDTwo, LinearTime,
and NearLinear. The gaps of the reported independent set sizes
by our algorithms to the independence numbers on the twelve real
graphs are shown in Table 3 (from sixth to ninth columns). We
can see that BDOne has the largest gap since it only applies the
degree-one reduction. Both BDTwo and LinearTime have smaller
gaps than BDOne because they additionally apply reduction rules
for handling degree-two vertices. BDTwo has a relatively smaller
gap than LinearTime due to that BDTwo can handle all degree-two

vertices while LinearTime can handle all but one cases (see Sec-
tion A.2 in Appendix); nevertheless, the di↵erence is not signifi-
cant. Generally, NearLinear has the smallest gap due to the addi-
tional reduction rules applied, and has an accuracy of � 99.895%
for all the twelve graphs as shown in the tenth column. Moreover,
among the twelve graphs, NearLinear reports the maximum inde-
pendent set for seven graphs (as indicated by ⇤) since the kernel
graph is empty as shown in the last column of Table 3. Note that, al-
though the gap of the independent set reported by other algorithms
can also be 0, they cannot report it as maximum independent set
since they cannot ensure it to be a maximum independent set with-
out knowing the independence number of the graph; for example,
DU on Email, BDOne on GrQc, and LinearTime on Epinions.
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Figure 8: Time and space of our algorithms

The processing time and memory consumption of these algo-
rithms are shown in Figure 8. Generally, BDOne, LinearTime and
NearLinear have similar running time, where both BDOne and
LinearTime have time complexity O(m). Although NearLinear
has time complexity O(m ⇥ �), it takes linear time for most of
the graphs (except BerkStan), due to the small � after our opti-
mizations in Section 5. Moreover, the memory consumptions of
these three algorithms are also similar as shown in Figure 8(b).
On the other hand, BDTwo runs slower and also consumes more
memory space, due to its higher complexities of time and space.
Specifically, BDTwo consumes almost 3 times more memory space
than BDOne, LinearTime, and NearLinear. As a reference, the ex-
act exponential-time algorithm VCSolver takes significantly more



time and space than other algorithms, as shown in Figure 8. Note
that, the time complexity of VCSolver highly depends on the ker-
nel graph size. VCSolver obtains an empty kernel graph for each
of the twelve easy graphs, except Berkstan and as-Skitter, and is
thus only slower than our algorithms by one order of magnitude on
these graphs. In summary, LinearTime is the best algorithm if lin-
ear time complexity is required, and NearLinear is a better choice
if higher solution quality is preferred but still with near-linear time.
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Figure 9: Processing time and kernel size

Eval-III: Evaluating Kernelization Techniques. We also eval-
uate the kernelization techniques in ReduMIS, LinearTime, and
NearLinear; the results are shown in Figure 9. Here, KernelReduMIS
is modified from ReduMIS by terminating the algorithm imme-
diately after obtaining the kernel graph; note that, the set of re-
duction rules used in KernelReduMIS is exactly the same as in
VCSolver [1]. In Figure 9, we only show the results for the graphs
that KernelReduMIS obtains a non-empty kernel graph; note that,
NearLinear also obtains empty kernel graphs for the other graphs
not in Figure 9, except Epinions, as illustrated in Table 3. The three
largest graphs, uk-2005, webbase, and it-2004, are also omitted in
Figure 9 since KernelReduMIS runs out of memory.

From Figure 9, we can see that KernelReduMIS runs much slower
than LinearTime and NearLinear; note that, KernelReduMIS only
obtains the kernel graph while LinearTime and NearLinear further
compute independent sets. Thus, applying the full set of reduction
rules in [1] takes an excessive long time such that it is not suitable
for processing large graphs (see our discussions in Section 3.1),
which motivates us to design new reduction rules and develop ef-
ficient techniques to incrementally apply reduction rules. Regard-
ing the kernel graph size, KernelReduMIS computes the smallest
kernel graph as a result of applying the full set of reduction rules
in [1], while LinearTime outputs the largest kernel graph with the
fastest processing time. To strike a balance between the processing
time and kernel graph size, NearLinear computes a smaller ker-
nel graph than LinearTime while still guaranteeing a near-linear
time complexity which is required for e�ciently processing large
graphs. NearLinear is able to output maximum or near-maximum
independent sets for most of the graphs as shown in Table 3.

Eval-IV: Boosting ARW by NearLinear. We also evaluate the
speedup of the local search algorithm ARW boosted by our algo-
rithms LinearTime and NearLinear. We run the algorithms on the
eight hard real graphs that VCSolver cannot finish in five hours, and
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Figure 10: Convergence plots for local search algorithms

set the time limit for each algorithm to be five hours (i.e., 1.8 ⇥ 104

seconds). An algorithm reports a tuple (t, |I|) if it finds a new larger
independent set I at time t; the first independent sets reported by
ARW, ARW-LT, and ARW-NL are the ones obtained after running
one iteration of the local search on the initial independent sets com-
puted by DU, LinearTime, and NearLinear, respectively.

The results on graphs soc-pokec, indochina, webbase and it-
2004, are shown in Figure 10 while the results on the other four
graphs are shown in Figure 15 in Appendix; here, x-axis shows
the time t and y-axis shows the independent set size |I|. ReduMIS
cannot run on uk-2005, webbase, and it-2004 due to running out
of memory. The accuracy of the first independent set outputted
by ARW-NL compared with the largest one among all independent
sets outputted by these algorithms during a five-hour run on these
four graphs are 99.979%, 99.963%, 99.985%, and 99.931%, re-
spectively. Across all graphs, ARW-LT and ARW-NL significantly
speed up ARW; the initial independent set outputted by ARW-NL
could also be larger than the largest independent set outputted by
ARW for a five hours’ running (e.g., on webbase). ARW-LT and
ARW-NL also take an early lead over ReduMIS that applies the full
set of reduction rules in [1]; that is, ARW-NL takes much shorter
time than ReduMIS to output independent sets of the same sizes.
Moreover, both ARW-LT and ARW-NL outperform OnlineMIS, the
most recent work aiming to speedup ARW. ARW-LT and ARW-NL
also scale well to large graphs, while ReduMIS fails on the three
largest graphs due to running out of memory.

8. CONCLUSION
In this paper, we developed a new Reducing-Peeling frame-

work for e�ciently computing a near-maximum independent set
of a large graph. Following the framework, we designed two base-
line algorithms based on the existing reduction rules for handling
degree-one and degree-two vertices. To further improve the e�-
ciency and the solution quality, we proposed a linear-time algo-
rithm and a near-linear time algorithm by designing new reduc-
tion rules and developing techniques for e�ciently and incremen-
tally applying reduction rules. Moreover, we also extended our
techniques to accelerate the local search algorithm ARW. Exten-
sive empirical studies demonstrate that all our algorithms output
much larger independent sets than the existing linear-time algo-
rithms while having a similar running time, and by combining our
techniques with ARW, we achieve significant speedup against ARW.
As a possible future direction, developing new exact reduction rules
and new techniques for e�ciently applying these reduction rules
might be an interesting issue to be investigated. Extending our tech-
niques to compute independent sets I/O e�ciently might also be an
interesting issue to be investigated.
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A. APPENDIX

A.1 Proofs of Lemmas and Theorems
Proof of Theorem 3.1. We prove the theorem by constructing a
graph instance such that Algorithm 3 runs in O(n log n) time and
there are only O(n) edges. Consider the graph in Figure 11, which
consists of vertices in four layers. The first layer is {v3n+1, v3n+2}, the
second layer is {vn+1, · · · , v3n}, the third layer is {v1, · · · , vn}, and the
fourth layer consists of other vertices. Vertices in the first layer and
the second layer form a complete bipartite graph. Each vertex vi
in the third layer is connected to two vertices vn+2⇤i�1 and vn+2⇤i in
the second layer, and vertices in the fourth layer are connected to
vertices in the third layer to trigger the degree-two folding.

...

...

...

v3n+1

v1 v2 vn�1 vn

v3nvn+2vn+1 v3n�1

v3n+2

Figure 11: Graph in proving the time complexity of Algorithm 3

We consider the degree-two folding (i.e., contraction) in itera-
tions. When contracting two vertices, we assume the resulting ver-
tex is the vertex with a larger id, and the cost is the smaller degree



of these two vertices; for example, for contracting v1 and v2, the
resulting vertex is v2, and the cost is 2. The first iteration of the
degree-two folding contracts {v1, v2}, · · · , {vn�1, vn} by the vertices
at the fourth layer as shown in Figure 11, with cost n

2 ⇥ 2 = n. To
trigger the degree-two folding for the second iteration, we assume
there are other vertices at the fourth layer, each of degree three; for
example, the additional vertex connected to v1, v2, v4 triggers the
contraction of v2 and v4 in the second iteration. In the second iter-
ation, we have n/4 contraction operations each of cost 4; thus, the
total cost is n

4 ⇥ 4 = n. So on so forth, to contract all vertices at the
third layer into a single vertex, the degree-two folding occurs for
log n iterations, with total cost n log n.

Now, let’s analyze the number of vertices and edges of the graph
in Figure 11. The first layer, second layer, and third layer contains
2, 2n, and n vertices respectively. For the fourth layer, to trigger the
contraction operations on all vertices at the third layer at iteration i,
we need n

2i additional vertices; for example, the first iteration needs
n
2 vertices as shown at the fourth layer in Figure 11. Moreover,
each of such vertices except those shown in Figure 11 has degree
3. Thus, the number of vertices at the fourth layer is n

2 +
n
22 + · · · +

n
2log n = n � 1; here, we assume n is a power of 2. Therefore, the
total number of vertices is 4n + 1, and the total number of edges is
2n⇥ 2+ n⇥ 2+ n

2 ⇥ 2+ ( n
2 � 1)⇥ 3 = 17

2 n� 3. That is, there exists a
graph with 4n+ 1 vertices and 17

2 n� 3 edges such that Algorithm 3
runs in O(n log n) time. Thus, the theorem holds. ⇤

Proof of Lemma 4.1. Firstly, if G contains a degree-two cycle C, it
is easy to see that vertices in C are disconnected from the remaining
part of G and ↵(G) = ↵(G\C) + ↵(C). Moreover, ↵(C) = b |C|2 c, and
the maximum independent set of C can be computed by removing
an arbitrary vertex v 2 C from C and then iteratively applying the
degree-one reduction.

Secondly, if G contains a maximal degree-two path P with v = w
(i.e., case-1), then there must exist a maximum independent set of
G that excludes v. Consider a maximum independent set I that
includes v, it must satisfy |I\P| = d |P|�2

2 e since v 2 I. If we exclude
v from I, we can enlarge I\({v} [ P) by adding d |P|2 e vertices of
P to obtain an independent set of the same size as I, which is a
maximum independent set and does not contain v.

Thirdly, if G contains a degree-two path P such that |P| is odd
and (v,w) 2 E (i.e., case-2), then there must exist a maximum inde-
pendent set of G that excludes v and w. Consider a maximum inde-
pendent set I of G that includes either v or w but not both (without
loss of generality, assume v 2 I), it must satisfy |I \ P| = |P|�1

2 since
v1 cannot be in I. Therefore, (I\({v} [ P)) [ {v1, v3, . . . , vl�2, vl} is
an independent set of the same size as I, which is a maximum in-
dependent set and contains neither v nor w.

Fourthly, if G contains a degree-two path P such that |P| is odd
and (v,w) < E (i.e., case-3), then there must exist a maximum
independent set of G that excludes either v1 or w. Here, we as-
sume |P| � 3, since it is trivial for |P| = 1. Consider a maxi-
mum independent set I of G that includes both v1 and w, it must
satisfy |I \ {v2, . . . , vl}| = |P|�3

2 since v1 2 I and w 2 I. There-
fore, both (I\({v1} [ P)) [ {v2, v4, . . . , vl�3, vl�1} and (I\({w} [ P)) [
{v3, v5, . . . , vl�2, vl} are independent sets of the same size as I, which
are maximum independent sets and excludes v1 or w. Moreover,
both I\({v1}[ P) and I\({w}[ P) are maximum independent sets of
the graph G\{v2, . . . , vl}[{(v1,w)}. Thus, we can remove {v2, . . . , vl}
from the graph and add edge (v1,w) to the graph.

Similarly, we can prove case-4 and case-5 for |P| being even. ⇤

Proof of Lemma 5.2. According to the definition of dominance,
u dominates its neighbor v if and only if every neighbor (except v)

of u is also connected to v. Equivalently, every vertex in N(u)\{v}
forms a triangle with u and v (i.e., �(u, v) � |N(u)\{v}| = d(u) � 1).
Moreover, we have �(u, v)  d(u) � 1. Thus, �(u, v) = d(u) � 1. ⇤

Proof of Theorem 6.1. In order to prove Theorem 6.1, we first
prove that ↵(G\S )  ↵(G) for any subset S of vertices of V; that
is, removing any vertex from a graph G will not result in a larger
maximum independent set. This claim can be proved by contradic-
tion. Assume there is a maximum independent set I0 of G\S that is
larger than a maximum independent set I of G (i.e., |I0| > |I|). By
following the facts that I0 ⇢ V and for any two vertices u and v in
I0, (u, v) is in G if and only if it is in G\S , it is easy to see that I0
is also an independent set of G and is larger than I. This contra-
dicts that I is a maximum independent set of G. Thus, the claim of
↵(G\S )  ↵(G) holds.

Now, we prove the theorem by induction. Firstly, let’s consider
the case R = ;. We prove that I is a maximum independent set of G
by contradiction. Assume I0 with |I0| > |I| is a maximum indepen-
dent set of G. Then, I0\F must be an independent set of G\F. As
R = ;, we have F ✓ I, and thus |I0\F| > |I\F|. However, from our
Reducing-Peeling framework in Algorithm 1 we know that I\F
is a maximum independent set of G\F, since I\F is obtained by
solely applying the exact reduction rules on G\F. Contradiction.
Thus, the theorem holds for R = ;.

Secondly, assume the theorem holds for |R| = k, we prove that
the theorem also holds for |R| = k+1. Consider the first vertex v in R
that is removed from the graph. (1) If there is a maximum indepen-
dent set of G not including v, then ↵(G) = ↵(G\{v}). By replacing
the input graph G with G\{v}, we still will get the independent set I,
and let the subset of vertices that are removed by the inexact reduc-
tion rule and are not in I be R0. Then R0 = R\{v}, and ↵(G\{v}) 
|I| + |R0|, which implies that ↵(G)  |I| + |R|. (2) If every maximum
independent set of G includes v, then ↵(G) = ↵(G\N[v])+1, where
N[v] = N(v) [ {v} is the closed neighborhood of v. Moreover, we
have ↵(G\{v})  |I| + |R0| by the assumption, where R0 = R\{v} is
the subset of vertices that are removed by the inexact reduction rule
and are not in I. Thus, ↵(G) = ↵(G\N[v]) + 1  ↵(G\{v}) + 1 
|I| + |R0| + 1 = |I| + |R|, and the theorem holds. ⇤

A.2 Degree-two Path Reduction vs. Degree-
two Vertex Reduction

Our newly proposed degree-two path reductions can handle all
degree-two vertices except the case that both neighbors of a degree-
two vertex have degrees at least three. That is, if the two neighbors
v and w of a degree-two vertex u have d(v) � 3 and d(w) � 3, then
the degree-two path reduction cannot be applied on u. But, we still
remove u from V=2 in Algorithm 4 (Line 20); if u later participates
in a degree-two path P with |P| � 2, P still can be found since at
least one vertex of P is in V=2. On the other hand, the degree-two
vertex reductions can handle all degree-two vertices; for example,
for the above case, the degree-two folding will contract {u, v,w} into
a single vertex. Nevertheless, we do not apply the degree-two fold-
ing since it does not guarantee worst-case linear time complexity
and moreover it consumes more memory space (see Section 3.3).

A.3 Properties of The Dominance Reduction
Capturing Other Reduction Rules. The dominance reduction
captures some other reduction rules as follows. Firstly, the isolated
vertex reduction [19] is applied to a vertex u whose neighbors are
connected to each other and form a clique with u as shown in Fig-
ure 13(a); if a vertex u satisfies the isolated vertex reduction, then
we can remove all its neighbors from the graph while preserving
the maximality of independent sets (i.e., ↵(G) = ↵(G\N(u))) [19].



Graphs Best Result Size Gap to the Best Result Size
Greedy DU SemiE BDOne BDTwo LinearTime NearLinear

cnr-2000 230,036 4,007 1,432 1,652 407 153 293 228
eu-2005 452,352 11,399 5,043 3,640 1,456 1,022 1,106 294

soc-pokec 789,447 63,389 13,494 21,781 836 221 444 286
indochina 4,714,147 109,577 48,676 37,083 11,920 8,156 8,986 1,871
uk-2002 11,915,614 294,714 138,035 98,468 20,239 12,036 15,418 3,650
uk-2005 23,697,232 550,726 255,947 167,238 38,027 - 28,906 10,455
webbase 77,524,841 1,292,632 435,646 444,512 81,758 - 53,079 12,808
it-2004 25,619,067 690,823 337,833 249,501 80,479 - 64,668 21,300

Table 4: The gap of the reported independent set size to the best one obtained by local search algorithms for the eight hard graphs (BDTwo
cannot run on uk-2005, webbase, it-2004 due to running out-of-memory)
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Figure 12: Running example of LinearTime

It is easy to verify that, if u satisfies the isolated vertex reduction,
then u dominates every vertex v 2 N(u); thus, N(u) can also be
removed by the dominance reduction. Note that, the degree-one
reduction and the degree-two isolation discussed in Section 2.1 are
special cases of the isolated vertex reduction; thus, the dominance
reduction also captures these two reduction rules.
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Figure 13: Isolated vertex reduction and degree-three reductions

Secondly, let u be a vertex of degree three with neighbors v1, v2
and v3, the dominance reduction captures two of the four config-
urations of edges between {v1, v2, v3}. (1) If there are three edges
between {v1, v2, v3} as shown in Figure 13(b), then all v1, v2, v3 are
dominated by u. (2) If there are two edges between {v1, v2, v3} as
shown in Figure 13(c), then v2 is dominated by u. The other two
configures are that there are one edge or no edge between these
vertices.

Mutual Dominance. It is possible that there are two vertices u
and v such that u dominates v and v also dominates u, as shown in
Figure 14. Moreover, as shown in Figure 14, if u is removed due to

being dominated by v, then v is no longer dominated by any other
vertex in the resulting graph; this also holds if we remove v.

vu

Figure 14: Mutual dominance
Order Oblivious. Another important property of the dominance
reduction is that, the order of removing dominated vertices from
the graph does not matter, as shown by the lemma below.

Lemma A.1: Given vertices v, u,w such that v dominates u and u
dominates w, then v must dominate w. Moreover, v still dominates
w after removing u from the graph.

Proof. Firstly, as v dominates u, we have (v, u) 2 E; thus, (v,w) 2 E
since u dominates w. Secondly, we prove that N(v)\{w} ✓ N(w).
As v dominates u, we have N(v)\{u} ✓ N(u). Moreover, we have
N(u)\{w} ✓ N(w) since u dominates w. Thus, we have N(v)\{w} =
(N(v)\{u})\{w} [ {u} ✓ (N(u)\{w}) [ {u} ✓ N(w) [ {u} = N(w),
where the last equality follows since (u,w) 2 E.

It is easy to see that, (v,w) 2 E and N(v)\{w} ✓ N(w) still holds
after removing u from the graph. ⇤

Following Lemma A.1, given a vertex u that dominates other ver-
tices and is itself dominated by v, if we remove u from the graph,
then all the vertices that are dominated by u before the removal of
u will be still dominated by v in the resulting graph. Thus, exactly
the same number of vertices will be removed from the graph by
the dominance reduction, regardless of the order of applying dom-
inance reduction on vertices.

A.4 Additional Experimental Results
In this subsection, we present additional experimental results.

Experimental Results of Independent Set Sizes on Hard Graphs.
The gaps of the independent sets reported by di↵erent algorithms
to the best result size, which is obtained by the local search algo-
rithms (e.g., see Figure 10), on the eight hard graphs are shown in
Table 4. The trend is similar to that in Table 3. Again, our base-
line algorithm BDOne has a much smaller gap than all existing
heuristic algorithms. Regarding our algorithms, NearLinear gen-
erally has the smallest gap, except on cnr-2000 and soc-pokec on
which BDTwo is better. Note that, the dominance reduction used in
NearLinear is orthogonal to the degree-two folding used in BDTwo.
Thus, BDTwo may perform better if dominance reduction does not
have much e↵ect on a graph while degree-two folding can reduce
the graph significantly. Nevertheless, BDTwo has the drawback of
higher time and space complexities. We will consider integrating
both dominance reduction and degree-two folding into our frame-
work in our future work.



Experimental Results on Synthetic Graphs. We also evaluate the
algorithms on synthetic graphs.

Graphs �
Independence Gap to the Independence Number

Number Greedy DU SemiE BDOne
PLR1 1.9 9,094,639 10,701 0 576 0⇤
PLR2 2.0 8,252,480 22,101 0 1,528 0⇤
PLR3 2.1 7,739,174 25,025 0 1,915 0⇤
PLR4 2.2 7,457,251 24,007 0 1,877 0⇤
PLR5 2.3 7,147,471 22,310 0 1,732 0⇤
PLR6 2.4 6,936,962 19,991 0 1,438 0⇤
PLR7 2.5 6,753,897 16,560 0 1,141 0⇤
PLR8 2.6 6,608,463 13,870 0 858 0⇤
PLR9 2.7 6,489,153 11,671 0 723 0⇤

Table 5: The gaps to the independence number on power-law
graphs (all our algorithms report maximum independent sets)

Power-Law Graphs. We generate nine Power-Law Random (PLR)
graphs with 107 vertices by varying the growth exponent � from 1.9
to 2.7, by NetworkX4; this kind of graph is also tested in [30]. The
results on PLR graphs are shown in Table 5, which have a similar
trend as Table 3. One thing to notice is that, the power-law random
graphs are actually very easy to process, which is also the main
motivation of our Reducing-Peeling framework; for example, even
our baseline algorithm BDOne reports maximum independent sets
for all these synthetic graphs. Note that, although DU also has a
zero gap, there is no mechanism for DU to certain that a reported
independent set is maximum. This confirms the advantage of our
Reducing-Peeling framework.

G Best Gap to the Best Result Size
Size DU SemiE BDOne BDTwo NearLinear

R1 472,545 0 4,072 0⇤ 0⇤ 0⇤
R2 480,982 0 5,246 0⇤ 0⇤ 0⇤
R3 484,889 0 6,579 0⇤ 0⇤ 0⇤
R4 485,487 29 8,004 6 0⇤ 2
R5 483,510 1,441 9,218 286 4 254

Table 6: The gap of the reported independent set size to the best
one for random graphs

Random Graphs. We also generate random graphs by the graph
generator GTGraph5, where each edge is generated by randomly
choosing a pair of vertices. Specifically, we have 5 random graphs
R1, R2, R3, R4, R5 with average degrees 2, 2.25, 2.5, 2.75, 3, re-
spectively; each graph has 106 vertices. The results are shown in
Table 6, which has a similar trend as Table 4 and Table 5. Note
that, our algorithms report the optimal solution for R1, R2, R3 and
R4, while none of the algorithms can find an optimal solution for
R5; VCSolver runs stack overflow on R5.

Graphs Existing Our Graphs Existing Our
GrQc 2,462 2,459 wiki-Talk 2,338,225 2,338,222

CondMat 9,645 9,612 BerkStan 414,440 415,032
AstroPh 6,790 6,760 as-Skitter 1,173,313 1,172,422
Email 246,898 246,898 in-2004 906,763 899,143

Epinions 53,670 53,600 LiveJ 2,674,121 2,633,626
dblp 434,870 434,289 hollywood 328,074 327,949

Table 7: Upper bounds of the independence number computed by
[1] and our NearLinear

Experimental Results on our Obtained Upper Bounds. The ex-
act algorithm for computing a maximum independent set in [1]
needs an upper bound of the independence number of a graph for
4http://networkx.github.io/
5http://www.cse.psu.edu/~madduri/software/GTgraph/

pruning unpromising branches. Thus, the best existing upper bound
in [1], is computed as the minimum of the clique cover-based upper
bound, linear programming-based upper bound, and cycle cover-
based upper bound. The results for the upper bounds computed by
the existing technique in [1] and our NearLinear are shown in Ta-
ble 7, where the upper bound reported by [1] is computed on the
input graph (i.e., without applying reduction rules). From Table 7,
we can see that NearLinear reports a slightly tighter upper bound;
moreover, our upper bound is obtained as a by-product without any
extra cost.
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Figure 15: Convergence plots for local search algorithms

Experimental Results of Boosting ARW by NearLinear on the
other Four Graphs. The results of evaluating, ARW-NL, ARW-LT,
ReduMIS, OnlineMIS, and ARW on graphs cnr-2000, eu-2005, uk-
2002 and uk-2005, are shown in Figure 15. The accuracy of the first
independent set outputted by ARW-NL compared with the largest
one among all independent sets outputted by these algorithms dur-
ing a five-hour run on these four graphs are 99.908%, 99.949%,
99.973%, and 99.962%, respectively. The general trend is the same
as in Figure 10.

A.5 The Local Search Algorithm ARW
The local search algorithm ARW was proposed in [2] for itera-

tively improving the sizes of independent sets, based on the Iterated
Local Search (ILS) metaheuristic. Given an initial independent set,
the ARW algorithm runs in iterations with each iteration consisting
of a perturbation and a local search step. The perturbation step is
used for diversification, which forces vertices into the solution and
at the same time removes their neighbors from the solution. In most
cases, a single vertex is forced into the solution, and with a small
probability, f > 1 vertices are forced into the solution; that is, f is
set to i + 1 with probability 1/2i. The vertices to be forced into a
solution are randomly picked from a set of candidates, with priority
given to those that are outside the solution for the longest time.

The second step is the local search step, which gradually im-
proves the current solution by using (1, 2)-swaps; a (1, 2)-swap re-
moves 1 vertex from the current solution and inserts 2 vertices into
the solution. By using a data structure that facilitates the insertion
and deletion operations on a vertex to be implemented in linear time
to its degree, e�cient techniques are developed in [2] for finding a
valid (1, 2)-swap in O(m) time if it exists. In our implementation
of ARW, the initial independent set is computed by DU and then
improved by running one iteration of the local search.


