
pSCAN: Fast and Exact Structural Graph Clustering

Lijun Chang†, Wei Li†, Xuemin Lin†, Lu Qin‡, Wenjie Zhang†
†University of New South Wales, Australia
‡University of Technology Sydney, Australia

{ljchang,weili,lxue,zhangw}@cse.unsw.edu.au, lu.qin@uts.edu.au

Abstract—In this paper, we study the problem of structural
graph clustering, a fundamental problem in managing and
analyzing graph data. Given a large graph G = (V, E), structural
graph clustering is to assign vertices in V to clusters and to iden-
tify the sets of hub vertices and outlier vertices as well, such that
vertices in the same cluster are densely connected to each other
while vertices in different clusters are loosely connected to each
other. Firstly, we prove that the existing SCAN approach is worst-
case optimal. Nevertheless, it is still not scalable to large graphs
due to exhaustively computing structural similarity for every
pair of adjacent vertices. Secondly, we make three observations
about structural graph clustering, which present opportunities for
further optimization. Based on these observations, in this paper
we develop a new two-step paradigm for scalable structural graph
clustering. Thirdly, following this paradigm, we present a new
approach aiming to reduce the number of structural similarity
computations. Moreover, we propose optimization techniques to
speed up checking whether two vertices are structure-similar to
each other. Finally, we conduct extensive performance studies on
large real and synthetic graphs, which demonstrate that our new
approach outperforms the state-of-the-art approaches by over
one order of magnitude. Noticeably, for the twitter graph with 1
billion edges, our approach takes 25 minutes while the state-of-
the-art approach cannot finish even after 24 hours.

I. Introduction

Due to the strong expressive power of the graph model,
many real-world applications model data and relationships
among the data as a graph G = (V, E), where vertices in
V represent entities of interest and edges in E represent
relationships between entities. With the proliferation of graph
applications, such as social networks, information networks,
web search, collaboration networks, E-commerce networks,
communication networks, and biology, significant research
efforts have been devoted towards efficiently and effectively
managing and analyzing graph data. Among them, graph
clustering is a fundamental problem and has been extensively
studied (e.g., in [7], [11], [14], [20], [21], [22], [27]).

Given a large graph G, graph clustering (or graph parti-
tioning) is to cluster vertices in G such that there is a dense
set of edges among vertices in the same cluster and there
are few edges among vertices belonging to different clusters.
Graph clustering has many applications. For example, graph
clustering can be used for detecting hidden structures in a
graph [27]. In social networks (e.g., Facebook), clusters in
a graph can be regarded as communities in the graph [12].
In a collaboration network (e.g., DBLP), a cluster may be
a group of researchers with similar research interests. In
computational biology, computing functional clusters of genes
can help biologists to conduct the study of gene microarrays.

In the literature, many different clustering definitions have
been proposed, such as modularity-based method ([7], [14],

[20]), graph partitioning ([11], [21], [24]), and density-based
method ([16]). However, all these definitions/methods do not
distinguish the different roles of the vertices in a graph; that
is, some vertices are members of clusters while other vertices
are not, among which some vertices are hubs that bridge
many clusters and other vertices are just outliers [17], [27]. To
distinguish the different roles of the vertices, structural graph
clustering was proposed in [27]. It uses the neighborhoods of
the vertices as clustering criteria, and defines the structural
similarity δ(u, v) between vertices u and v as the number of
their common neighbors normalized by the geometric mean of
their degrees. Given parameters ǫ and µ, vertices u and v are
structure-similar to each other if δ(u, v) ≥ ǫ, and u is a core
vertex if it has at least µ neighbors that are structure-similar to
it. Then, clusters are growing from core vertices by including
into each cluster all vertices that are structure-similar to core
vertices in the cluster. Finally, for each vertex that is not a
member of clusters, it is a hub vertex if its neighbors belong
to two or more clusters, and it is an outlier vertex otherwise.
For example, Figure 1 shows two clusters, respectively in Data
Mining research area and Information Retrieval research area,
extracted from the coauthor network (http://arnetminer.org/) by
structural graph clustering; the hub vertices and outlier vertices
are shown as well.

Barbara M.

Wildemuth

Chi−Wing Wong
Raymond

Berthier A.

Ribeiro−Neto

Jianyong Wang

Chun Tang

Ke Wang

Wei Wang

Hub

Philip S. Yu

Jiuyong Li

Qiang Yang

Xindong Wu

Jiawei Han

Wensi Xi

Ming Luo

Marco Cristo

Pavel Calado

Zheng Chen

Nivio Ziviani

Edward A. Fox

Outlier

C2: Information Retrieval

C1: Data Mining
Xifeng Yan

Jeffrey Pomerantz

Weiguo Fan

Shiwei Tang

Jian Pei

Ada Wai−Chee Fu

2v

6v

1v

v5

8v

13v

3v

7v 12v

9v

14v

11v

10v
v4

18v

17v16v

19v

20v

23v

21v

22v

15v

25v

24v

Fig. 1: Example structural graph clustering

Note that, after the clusters in a graph are computed, it is
fairly easy to obtain the hub vertices and outlier vertices by
following the definition. Thus, in this paper we mainly focus on
efficiently computing clusters for structural graph clustering.

Existing Approaches and Challenges. There exist two ap-
proaches for exact structural graph clustering: SCAN and
SCAN++. The SCAN approach [27] iterates through all ver-
tices that have not yet been assigned to clusters. For each such
vertex u, if it is a core vertex, then the SCAN approach creates
a new cluster C initially containing only u and iteratively adds
into C all such vertices that are structure-similar to a core
vertex in C. Thus, the SCAN approach essentially computes
the structural similarity for every pair of adjacent vertices in

G (i.e., for every (u, v) ∈ E); this requires high computational
cost and makes it not scalable to large graphs.

SCAN++ [22] was recently proposed to overcome the
drawback of SCAN, and is the state-of-the-art approach. It
is designed based on the property that a vertex and its
two-hop-away vertices are expected to share large parts of
their neighborhoods due to the large values of clustering
coefficients in real-world graphs [26]. Thus, SCAN++ may
avoid computing structural similarity between vertices that are
shared between the neighbors of a vertex and its two-hop-
away vertices. Compared with SCAN, SCAN++ computes
less structural similarities. However, the number of structural
similarity computations in SCAN++ is still large.

In summary, there are two main challenges for structural
graph clustering.

• How to reduce the number of structural similarity
computations?

• How to efficiently check whether two vertices are
structure-similar to each other?

Note that, for each pair of non-pruned adjacent vertices, all
existing approaches compute the exact value of their structural
similarity to determine whether the two vertices are structure-
similar to each other; this is time-consuming.

Our Approaches and Contributions. In this paper, we
prove that the existing SCAN approach is worst-case optimal;
nevertheless, it is still not scalable to large graphs due to
exhaustively computing structural similarity for every pair
of adjacent vertices. Thus, in this paper, we propose a new
efficient approach aiming at reducing the number of structural
similarity computations as well as optimizing the checking of
structure-similar between two vertices. Our approach is also
worst-case optimal.

Firstly, we make three observations about structural graph
clustering: 1) the clusters in structural graph clustering may
overlap; 2) the clusters of core vertices are disjoint; and 3) the
clusters of non-core vertices are uniquely determined by core
vertices. Base on these observations, we develop a two-step
paradigm for structural graph clustering. In the paradigm, we
first cluster all core vertices by partitioning them into clusters,
and then cluster non-core vertices by assigning each non-core
vertex v to the same clusters as its neighbors that are core
vertices and are structure-similar to v.

Following the paradigm, we propose a pruned SCAN
(denoted pSCAN) approach for structural graph clustering. We
incrementally maintain an effective-degree ed(v) and a similar-
degree sd(v) for every vertex v ∈ V , with ed(v) ≥ sd(v). A
vertex v is determined to be a core vertex once sd(v) ≥ µ, and
it is determined to be a non-core vertex once ed(v) < µ; thus,
the set of core vertices can be efficiently identified. Then, the
clusters of core vertices are computed based on the transitive
property that, two core vertices, u and v, are in the same
cluster if (u, v) ∈ E and they are structure-similar. Moreover,
we avoid computing the structural similarity between core
vertices u and v if they have already been assigned to the
same cluster. Consequently, pSCAN saves a lot of structural
similarity computations.

To improve the efficiency of pSCAN, we further pro-
pose three optimization techniques, cross link, pruning rules,

and adaptive structure-similar checking, for speeding up the
checking of structure-similar between two vertices without
computing the exact value of their structural similarity.

Our primary contributions are summarized as follows.

• A Proof of Worst-Case Optimality. We prove that
the existing SCAN approach is worst-case optimal.
Nevertheless, it is still not scalable to large graphs.

• A New Two-Step Paradigm. We develop a new two-
step paradigm for structural graph clustering based on
our three observations.

• An Optimization Approach. We propose an optimiza-
tion approach by reducing the number of structural
similarity computations as well as optimizing the
checking of structure-similar between two vertices.

We conduct extensive empirical studies on large real
and synthetic graphs. The empirical studies confirm that our
new approach significantly outperforms the state-of-the-art
approaches by over one order of magnitude. Noticeably, for
the twitter graph with 1 billion edges, our approach computes
the structural graph clustering in 25 minutes while the state-
of-the-art approach cannot finish even after 24 hours.

Organization. The rest of the paper is organized as follows.
A brief overview of related work is given below. Section II
gives the definition of the studied problem. In Section III, we
analyze the existing SCAN algorithm and prove that it is worst-
case optimal. Based on our three observations, we propose a
new paradigm for structural graph clustering in Section IV,
while our new approach aiming to reduce the number of
structural similarity computations is presented in Section V. To
speed up checking whether two vertices are structure-similar
to each other, we further propose three optimization techniques
in Section VI. Section VII presents our experimental results,
and Section VIII finally concludes the paper.

Related Work. We categorize the related works as follows.

Structural Graph Clustering. Exact structural graph clustering
was studied in [22], [27] as discussed above. Approximation
techniques were proposed in [19] to improve the efficiency of
SCAN by sampling edges to reduce the number of structural
similarity computations; however, this produces approximate
results. In this paper, we propose a new approach for exact
structural graph clustering, which improves the state-of-the-art
approach by over one order of magnitude.

Other Graph Clustering Models. Other graph clustering mod-
els have also been studied; for example, modularity-based
method ([7], [14], [20]), graph partitioning ([11], [21], [24]),
and density-based method ([16]). However, due to inherently
different problem definitions, these methods cannot be applied
to structural graph clustering.

Dense Subgraph Extraction. Efficient techniques for comput-
ing all maximal cliques and quasi-cliques of a graph were pre-
sented in [1], [4], and [28], respectively. Problems of efficiently
computing other dense subgraphs, including k-core [3], DN-
subgraph [25], triangle k-core motifs [29], k-edge connected
components [2], etc., have also been recently investigated.
Nevertheless, due to inherently different problem definitions,
these techniques are inapplicable to structural graph clustering.

Online Community Search. Given a set q of query vertices
and a graph G, the problem of online community search that
computes the communities in G containing q has also been
studied recently. Different semantics for community search
have been studied; for example, local modularity based com-
munity search [6], k-core based community search [23], [10],
k-truss based community search [15], and α-adjacency γ-quasi-
k-clique based community search [9]. Nevertheless, due to
inherently different problem natures, none of these techniques
can be used for structural graph clustering.

II. Preliminary

In this paper, we focus on an unweighted undirected graph
G = (V, E) [13], where V is the set of vertices and E is
the set of edges. We denote the number of vertices, |V |, and
the number of edges, |E|, in G by n and m, respectively. Let
(u, v) ∈ E denote an edge between u and v; u (resp. v) is said
to be a neighbor of v (resp. u). In the following, for ease of
presentation we simply refer an unweighted undirected graph
as a graph.

Definition 2.1: The structural neighborhood of a vertex u,
denoted by N[u], is defined as the closed neighborhood [13]
of u; that is N[u] = {v ∈ V | (u, v) ∈ E} ∪ {u}.

In this paper, we focus on the structural neighborhood (i.e.,
closed neighborhood) of a vertex, and the degree of u, denoted
by d[u], is the cardinality of N[u] (i.e., d[u] = |N[u]|). Note
that, the open neighborhood [13] of u, denoted by N(u), is
the set of neighbors of u (N(u) = {v ∈ V | (u, v) ∈ E}). For
example, for vertex v5 in Figure 2, its structural neighborhood
is N[v5] = {v4, v5, v6}, its degree is d[v5] = |N[v5]| = 3, and its
open neighborhood is N(v5) = {v4, v6}.

v10

v4v4v4v2

v1

v3

v5 v6

v7

v8

v9

Fig. 2: An example graph

Definition 2.2: The structural similarity between vertices u
and v, denoted by σ(u, v), is defined as the number of common
vertices in N[u] and N[v] normalized by the geometric mean
of their cardinalities; that is,

σ(u, v) =
|N[u] ∩ N[v]|
√

d[u] · d[v]
. (1)

Intuitively, for two vertices, the more common vertices
in their structural neighborhoods, the larger the structural
similarity value. Note that, the structural similarity is between
0 and 1; that is, 0 ≤ σ(u, v) ≤ 1,∀u, v ∈ V . For example, in
Figure 2, N[v5] = {v4, v5, v6} and N[v4] = {v1, v2, v3, v4, v5};
thus σ(v4, v5) =

|{v4,v5}|√
3·5
= 2√

15
. Similarly, N[v1] = {v1, v2, v3, v4}

and σ(v1, v4) =
|{v1,v2,v3,v4}|√

4·5
= 2√

5
.

Given a similarity threshold 0 < ǫ ≤ 1, the ǫ-neighborhood
of u, denoted by Nǫ[u], is defined as the subset of vertices in

N[u] whose structural similarities with u are at least ǫ; that is,
Nǫ[u] = {v ∈ N[u] | σ(u, v) ≥ ǫ}. Note that, Nǫ[u] also includes
u for each u ∈ V , since σ(u, u) = 1. For example, in Figure 2,
N0.8[v4] = {v1, v2, v3, v4}, and N0.8[v7] = {v6, v7, v8, v9}.

Definition 2.3: Given a similarity threshold 0 < ǫ ≤ 1 and an
integer µ ≥ 2, a vertex u is a core vertex if Nǫ[u] ≥ µ.

A vertex is a non-core vertex if it is not a core vertex. For
example, given ǫ = 0.8 and µ = 4 in Figure 2, v4 and v7 are
core vertices (since N0.8[v4] = N0.8[v7] = 4) while v5 and v10

are non-core vertices.

Given parameters 0 < ǫ ≤ 1 and µ ≥ 2, vertex v is
structure-reachable from vertex u if there is a sequence of
vertices v1, v2, . . . , vl ∈ V (for some integer l ≥ 2) such that:
(i) v1 = u and vl = v; (ii) v1, v2, . . . , vl−1 are core vertices; and
(iii) vi+1 ∈ Nǫ[vi] for each 1 ≤ i ≤ l − 1.

Definition 2.4: A cluster C is a subset of V with at least two
vertices (i.e., |C| ≥ 2) such that:

• (Maximality) If a core vertex u ∈ C, then all vertices
that are structure-reachable from u also belong to C.

• (Connectivity) For any two vertices v1, v2 ∈ C, there is
a vertex u ∈ C such that both v1 and v2 are structure-
reachable from u.

For example, given ǫ = 0.8 and µ = 4, there are two clusters
in Figure 2: C1 = {v1, v2, v3, v4} and C2 = {v6, v7, v8, v9}.

Problem Statement. Given a graph G = (V, E) and parameters
0 < ǫ ≤ 1 and µ ≥ 2, in this paper we study the problem of
efficiently computing the set C of clusters in G.

In the following, we assume that there always exist two
parameters, 0 < ǫ ≤ 1 and µ ≥ 2, without explicitly mentioning
them, and we say that vertices u and v are structure-similar to
each other if σ(u, v) ≥ ǫ.

A. Hubs and Outliers

After computing the set of clusters in a graph G, similar
to [22], [27] we can also obtain the set of hubs and outliers
in G, which are defined as follows.

Definition 2.5: Given the set C of clusters in a graph G, a
vertex u that is not in any cluster in C is a hub vertex if its
neighbors belong to two or more clusters, and it is an outlier
vertex otherwise.

For example, given ǫ = 0.8 and µ = 4, in Figure 2
C = {{v1, v2, v3, v4}, {v6, v7, v8, v9}}, v5 is a hub vertex since its
neighbors v4 and v6 belong to different clusters, and v10 is an
outlier vertex since it has only one neighbor.

Since, given the set of clusters in G, it is straightforward
to obtain the set of hubs and the set of outliers in a graph
G in O(n + m) time by following the definition, we only
focus on computing the set of clusters in G in the following.
Nevertheless, our techniques can be easily extended to obtain
hubs and outliers in G as well.

III. Analysis of The SCAN Algorithm

In this section, we briefly review the existing SCAN
algorithm proposed in [27] which serves as one of the baseline
algorithms in our experiments. We prove that SCAN is worst-
case optimal; nevertheless, it is not scalable to large graphs,
due to exhaustively computing structural similarities for all
pairs of adjacent vertices.

Algorithm 1: SCAN [27]

Input: A graph G = (V, E), and parameters 0 < ǫ ≤ 1 and
µ ≥ 2

Output: The set C of clusters in G

1 for each edge (u, v) ∈ E do Compute σ(u, v);
2 C← ∅;
3 for each unexplored vertex u ∈ V do
4 C ← {u};
5 for each unexplored vertex v in C do
6 if |Nǫ[v]| ≥ µ then C ← C ∪ Nǫ[v];
7 Mark v as explored;

8 if |C| > 1 then C← C ∪ {C};
9 return C;

The pseudocode of SCAN is shown in Algorithm 1. It
first computes structural similarities for all pairs of adjacent
vertices, and then obtains the clusters by traversing the graph
once. Note that, for ease of analysis, Algorithm 1 separates the
computation of structural similarities (e.g., see Line 1) from
the other parts; nevertheless, it is equivalent to the original
algorithm in [27]. The correctness of SCAN directly follows
from the lemma below, which was proved in [27].

Lemma 3.1: [27] For any cluster C ∈ C in G, it equals the
set of vertices that are structure-reachable from u, where u is
an arbitrary core vertex in C,

In Algorithm 1, Line 1 essentially enumerates all triangles
in G. The rationality is that, when computing σ(u, v) =
|N[u]∩N[v]|√

d[u]·d[v]
, each vertex w ∈ (N[u]∩N[v])\{u, v} forms a triangle

with u and v; on the other hand, each triangle (u, v,w) in G
contributes one vertex to each of N[u] ∩ N[v], N[v] ∩ N[w],
and N[u] ∩ N[w]. Thus, Line 1 has the same time complexity
as triangle enumeration, which is O(α(G) · m) with α(G) ≤√

m [5]; here, α(G) is the arboricity of G, which equals the
minimum number of edge-disjoint forests needed to cover all
edges of G. On the other hand, it is easy to see that the time
complexity of Lines 2–8 is O(m). Consequently, computing
structural similarities is the dominating cost in structural graph
clustering. The time complexity of Algorithm 1 is O(α(G) ·m),
and it is O(m1.5) in the worst case.

Theorem 3.1: Algorithm SCAN is worst-case optimal for
structural graph clustering.

Proof Sketch: Let’s consider a graph G with 2n vertices,
{v1, v2, . . . , v2n}, where vertices {v1, v2, . . . , vn} form a clique
and each vertex vi+n for 1 ≤ i ≤ n is only connected to vi.
Given µ = n + 1 and ǫ > 0 being the largest value such that
the entire graph G is a single cluster. Then, any algorithm
for structural graph clustering needs to compute structural
similarities for all pairs of adjacent vertices in G to confirm
that every vertex in the clique is a core vertex; this is equivalent
to enumerating all triangles in G, thus has a time complexity

O(α(G) · m) = O(m1.5). Note that, there are θ(n3) = θ(m1.5)
triangles in the graph, and each triangle needs to be enumerated
to get the correct clusters. Thus, the theorem holds. �

Since SCAN is worst-case optimal, it is unlikely that there
is an algorithm for structural graph clustering with better
worst-case time complexity than SCAN.1 Thus, in this paper
we develop practical techniques for scalable structural graph
clustering. In particular, since computing structural similarities
for all pairs of adjacent vertices in G is the dominating
cost, we mainly focus on optimizing the structural similarity
computations in the following.

IV. A New Paradigm

In this section, we develop a new paradigm for structural
graph clustering aiming to reduce the number of structural
similarity computations. In the following, we first present
our three observations about structural graph clustering in
Section IV-A, based on which we then develop our new
paradigm in Section IV-B.

A. Observations

We have three important observations about structural
graph clustering that has not been stated and utilized in the
existing works.

Observatioin-I: The Clusters May Overlap. The first ob-
servation is that the clusters computed by structural graph
clustering may overlap. For example, consider the graph in
Figure 3 with ǫ = 2√

15
and µ = 4, where structural similarities

of pairs of adjacent vertices are shown beside the edges. One
can verify that, σ(u, v) ≥ ǫ for all edges (u, v) in the graph,
and all vertices except v5 are core vertices. Consequently, there
are two clusters in the graph in Figure 3, C1 = {v1, . . . , v5} and
C2 = {v5, . . . , v9}, where v5 belongs to both clusters. Therefore,
partitioning a graph into disjoint subgraphs will not generate
the correct clusters in the graph.

2
√

5

v4v4
1

v4v2

v1
2
√

5

v3

1
1

2
√

15

v52
√

5

v6

v7

v8

v9C1 C2

2
√

5

2
√

5

1

1
2
√

5

2
√

15 1

Fig. 3: Overlapping clusters

Observation-II: The Clusters of Core Vertices Are Disjoint.
Although clusters may overlap, we prove that each core vertex
belongs to a unique cluster in the following lemma.

Lemma 4.1: Each core vertex belongs to a unique cluster in
structural graph clustering.

Proof Sketch: We prove the lemma by contradiction. Assume
there is a core vertex u that belongs to two clusters, C1 and C2.

1Note that, the time complexity in [22] is based on average-case analysis.

Then, following Lemma 3.1, every vertex in C1 is structure-
reachable from u and every vertex in C2 is also structure-
reachable from u. Thus, all vertices in C1 ∪ C2 are structure-
reachable from u; this contradicts that C1 (respectively, C2) is
a cluster with u ∈ C1 (respectively, u ∈ C2). �

From Lemma 4.1, we can see that the clusters of core
vertices form a partition of the entire set of core vertices.
For example, the two clusters of core vertices in Figure 3 are
{v1, . . . , v4} and {v6, . . . , v9}, which form a partition of the entire
set of core vertices. Thus, it is feasible to compute clusters of
core vertices by partitioning the entire set of core vertices.

Observation-III: The Clusters of Non-core Vertices Are
Uniquely Determined By Core Vertices. Our third observa-
tion is that, given the clusters Cc of core vertices in G, non-
core vertices in G can be clustered by assigning each non-core
vertex v to every cluster Cc ∈ Cc such that there is a core
vertex u ∈ Cc and v ∈ Nǫ[u]. For example, after clustering the
core vertices in Figure 3, the non-core vertex v5 is assigned to
both clusters since v5 ∈ Nǫ[v4] and v5 ∈ Nǫ[v6]. We prove the
correctness of this assignment in the following lemma.

Lemma 4.2: Let Cc be the set of clusters of core vertices
in G. Then, the set of clusters of all vertices in G is C =
{Cc

⋃

u∈Cc
Nǫ[u] | Cc ∈ Cc}.

Proof Sketch: Lemma 3.1 says that, each cluster C in G equals
the set of vertices that are structure-reachable from v where v
is an arbitrary core vertex in C. From Lemma 4.1, we also
know that v belongs to a unique cluster in Cc, let this cluster
be Cc. Now, we only need to prove that C and Cc

⋃

u∈Cc
Nǫ[u]

are the same.

(⇒) First, we prove that every vertex in C is also in
Cc

⋃

u∈Cc
Nǫ[u]. As C is the set of vertices that are structure-

reachable from v, then any vertex w ∈ C is structure-reachable
from v. If w is a core vertex, then w ∈ Cc since Cc is the
set of clusters of core vertices. Otherwise, there is a sequence
of vertices v1 = v, v2, . . . , vl = w such that vi is a core vertex
for each 1 ≤ i < l and w ∈ Nǫ[vl−1]; thus, vl−1 ∈ Cc and
w ∈ ⋃u∈Cc

Nǫ[u].

(⇐) It is easy to see that Cc ⊆ C. Moreover, for an arbitrary
vertex w ∈ ⋃u∈Cc

Nǫ[u], it is easy to verify that w is structure-
reachable from v; thus w ∈ C.

Thus, the lemma holds. �

Therefore, after clustering core vertices in a graph G,
following Lemma 4.2 we can obtain the set of clusters in G by
assigning neighbors of core vertices to proper clusters while
ignoring other vertices and their connections in G.

B. The Paradigm

Based on the three observations in Section IV-A, in this
paper we develop a new paradigm for structural graph clus-
tering consisting of two steps: step-1) clustering core vertices;
and step-2) clustering non-core vertices.

Clustering Core Vertices. For efficiently clustering the set of
core vertices, we propose the concept of connectivity graph.

Definition 4.1: Given a graph G = (V, E), we define a
connectivity graph Gc = (Vc, Ec), where Vc is the set of core

vertices in G and there is an edge (u, v) ∈ Ec if and only if
u, v ∈ Vc, (u, v) ∈ E, and σ(u, v) ≥ ǫ in G.

We prove in the following lemma that, there is a one-to-
one correspondence between clusters of core vertices in G and
connected components in Gc, where a connected component
of a graph is a maximal subgraph in which any two vertices
are connected to each other by a path.

Lemma 4.3: For any two core vertices u and v in G, they are
in the same cluster in G if and only if they are in the same
connected component in Gc.

Proof Sketch: Firstly, we prove that if u and v are in the same
connected component in Gc then they are in the same cluster in
G. Since u and v are in the same connected component in Gc,
then there is a path of core vertices in Gc, (v1 = u, . . . , vl = v),
such that for each 1 ≤ i < l, (vi, vi+1) ∈ Ec (i.e., (vi, vi+1) ∈ E
and σ(vi, vi+1) ≥ ǫ in G). Therefore, v is structure-reachable
from u, and thus u and v are in the same cluster in G.

Secondly, we prove that if u and v are in the same cluster in
G then they are in the same connected component in Gc. Since
u and v are in the same cluster in G, then there is a core vertex
w ∈ Vc such that both u and v are structure-reachable from w.
That is, there is a sequence of vertices v1 = w, v2, . . . , vl = u in
G such that v1, . . . , vl−1 are core vertices and for each 1 ≤ i < l
σ(vi, vi+1) ≥ ǫ. Since u is also a core vertex, (v1, . . . , vl) is a
path in Gc, thus w and u are in the same connected component
in Gc. Similarly, we can prove that w and v are in the same
connected component in Gc. Thus, u and v are in the same
connected component in Gc. �

v3

v6

v7

v8

v9

v4v4v4v2

v1

Fig. 4: Connectivity graph

For example, the connectivity graph of the graph in Fig-
ure 3 with ǫ = 2√

15
and µ = 4 is shown in Figure 4.

The two connected components of the connectivity graph are
{v1, . . . , v4} and {v6, . . . , v9}, which respectively correspond to
the two clusters of core vertices in Figure 3.

Clustering Non-core Vertices. The clusters of non-core ver-
tices can be computed by directly following Observation-III
and Lemma 4.2.

The Paradigm. Following Lemma 4.2 and Lemma 4.3, the
pseudocode of our two-step paradigm for structural graph
clustering is shown in Algorithm 2, which first computes the
clusters of core vertices and then assigns non-core vertices to
clusters. Note that, for presentation simplicity, in Algorithm 2
we assume that the connectivity graph Gc contains all vertices
in G; nevertheless, non-core vertices can be pruned from Gc

as a postprocessing.

In Algorithm 2, Lines 1–8 cluster core vertices while Line 9
clusters non-core vertices. To cluster core vertices, following
Lemma 4.3 we construct the connectivity graph Gc. For each

Algorithm 2: Paradigm

Input: A graph G = (V, E), and parameters 0 < ǫ ≤ 1 and
µ ≥ 2

Output: The set C of clusters in G

/* Step-1: cluster core vertices */

1 Initialize the connectivity graph to be Gc = (V, ∅);
2 for each vertex u ∈ V do core(u)← false;
3 for each vertex u ∈ V do
4 if u is a core vertex then core(u)← true;

/* Add edges into Gc */

5 if core(u) then
6 for each vertex v ∈ Nǫ[u] do
7 if core(v) then Insert edge (u, v) into Gc;

8 Let Cc be the set of connected components in Gc containing
core vertices;
/* Step-2: cluster non-core vertices */

9 C← {Cc

⋃

u∈Cc
Nǫ[u] | Cc ∈ Cc};

10 return C;

vertex u ∈ V , we first determine whether u is a core vertex
(Line 4). If u is a core vertex (Line 5), then for each core vertex
v ∈ Nǫ[u] (Line 6), we add an edge (u, v) into Gc (Line 7).
Then, each set of core vertices in a connected component in
Gc is a cluster of core vertices in G (Line 8). Finally, the non-
core vertices are added to clusters according to Lemma 4.2
(Line 9).

V. Our pSCAN Approach

Based on the observations and the new paradigm in Sec-
tion IV, in this section we present our new approach to
structural graph clustering. Our aim is to reduce the number
of structural similarity computations. Thus, we partition the
set of all pairs of adjacent vertices (i.e., E) into three subsets,
En,n, Ec,c, and Ec,n, and discuss how to reduce the number of
computations for each subset, respectively; here, En,n is the set
of pairs of adjacent non-core vertices, Ec,c is the set of pairs
of adjacent core vertices, and Ec,n is the set of adjacent vertex
pairs between core vertices and non-core vertices.

The pSCAN Approach. Following the general paradigm in
Algorithm 2, we propose a pruned SCAN approach, denoted
pSCAN, to structural graph clustering. The pseudocode of
pSCAN is shown in Algorithm 3. For every vertex u ∈ V , we
initially compute two values (Lines 2–4), whose definitions
shall be discussed shortly. Then, we iteratively check every
vertex u ∈ V whether it is a core vertex or not (Line 6); if
u is a core vertex, then we cluster its neighbors that have
been determined to be core vertices (Line 7). After checking
all vertices (i.e., the set of core vertices have been obtained),
the set Cc of clusters of core vertices is generated from the
disjoint-set data structure (Line 8). Finally, we cluster the non-
core vertices (Line 9).

In Algorithm 3, instead of explicitly constructing the con-
nectivity graph Gc, we use a disjoint-set data structure [8]
to incrementally maintain the connected components in Gc.
The data structure maintains a collection S = {S 1, S 2, . . .} of
disjoint dynamic subsets, and has two fundamental operations:
find-subset and union; find-subset determines which subset a
particular element is in and union joins two subsets into a
single subset. Initially, each vertex in G forms a singleton

Algorithm 3: pSCAN

Input: A graph G = (V, E), and parameters 0 < ǫ ≤ 1 and
µ ≥ 2

Output: The set C of clusters in G

/* Step-1: cluster core vertices */

1 Initialize a disjoint-set data structure with all vertices in V;
2 for each vertex u ∈ V do
3 sd(u)← 0; /* Initialize similar-degree */;
4 ed(u)← d[u]; /* Initialize effective-degree */;

5 for each vertex u ∈ V in non-increasing order w.r.t. ed(u) do
6 CheckCore(u); /* Check if u is core vertex */;
7 if sd(u) ≥ µ then ClusterCore(u);

8 Cc ← the set of subsets of core vertices in the disjoint-set data
structure;
/* Step-2: cluster non-core vertices */

9 ClusterNoncore();
10 return C;

subset (Line 1); adding an edge (u, v) into Gc is achieved
by union(u, v). Thus, two vertices u and v are in the same
connected component if and only if they are in the same subset
in the data structure (i.e., find-subset(u) = find-subset(v)).

Vertex Exploration Order. With the aim of reducing the num-
ber of structural similarity computations, we explore vertices
in G in non-increasing order of their effective-degrees (Line 5),
which is defined as follows.

Definition 5.1: The effective-degree of a vertex u ∈ V , denoted
ed(u), is the degree of u minus the number of u’s neighbors
that have been determined to be not structure-similar to u.

Intuitively, the effective-degree of a vertex u is an upper
bound of the size of its ǫ-neighborhood (i.e., |Nǫ[u]| ≤ ed(u));
thus, the larger the effective-degree of a vertex, the more likely
it is a core vertex. For example, in Figure 5, assume σ(v4, v6) <
ǫ and σ(v1, v6) < ǫ have been computed, then ed(v6) = d[v6]−
2 = 2.

The rationality that we first explore vertices that are more
likely to be core vertices (i.e., with higher effective-degrees)
is as follows. From Section IV, we know that after computing
the clusters Cc of core vertices in G, the ǫ-neighborhoods of
all core vertices are sufficient for generating the clusters in
G. That is, after obtaining the set Vc of core vertices in G
and computing structural similarities between core vertices
and their neighbors, we can correctly generate the clusters
in G without computing structural similarity for other pairs
of vertices. In this way, we reduce the number of structural
similarity computations for vertex-pairs in En,n. For example,
in Figure 5, assume {v1, . . . , v5} is determined to be the set of
core vertices, then the structural similarity between v6 and v7

does not need to be computed in order to compute the clusters
in the graph.

Note that, the effective-degree of a vertex u will be de-
creased when more of its neighbors have been explored and
determined to be not structure-similar to u. Efficient tech-
niques for iteratively retrieving the vertex with the maximum
effective-degree will be discussed in Section V-A.

Checking Core Vertices. For efficiently checking whether a
vertex is a core vertex, we compute a similar-degree for each
vertex u ∈ V , which is defined as follows.

Algorithm 4: CheckCore(u)

1 if ed(u) ≥ µ and sd(u) < µ then
2 ed(u)← d[u]; sd(u)← 0;
3 for each vertex v ∈ N[u] do
4 Compute σ(u, v);
5 if σ(u, v) ≥ ǫ then sd(u)← sd(u) + 1;
6 else ed(u)← ed(u) − 1;
7 if vertex v has not been explored then
8 if σ(u, v) ≥ ǫ then sd(v)← sd(v) + 1;
9 else ed(v)← ed(v) − 1;

10 if ed(u) < µ or sd(u) ≥ µ then break;

11 Mark v as explored;

Definition 5.2: The similar-degree of a vertex u ∈ V ,
denoted sd(u), is the number of u’s neighbors that have been
determined to be structure-similar to u.

Intuitively, the similar-degree of a vertex u is a lower bound
of the size of its ǫ-neighborhood (i.e., |Nǫ[u]| ≥ sd(u)); thus,
we can determine u to be a core vertex without exploring
u if sd(u) ≥ µ. For example, in Figure 5, assume v1, . . . , v5

are structure-similar to each other and v1, v3, v4 have been
explored, then sd(v2) = sd(v5) = 4; if µ ≤ 4 then we can
determine v2 and v5 to be core vertices without exploring them.

Based on the similar-degrees of vertices, the pseudocode
for checking whether a vertex u is a core vertex or not is shown
in Algorithm 4. If ed(u) < µ then u is not a core vertex,
or if sd(u) ≥ µ then u is a core vertex; note that ed(u) ≥
sd(u). Otherwise, ed(u) ≥ µ > sd(u) (Line 1), and we need to
compute structural similarities between u and its neighbors to
determine whether u is a core vertex. We reinitialize ed(u) and
sd(u) (Line 2). For each vertex v ∈ N[u], we first compute the
structural similarity between u and v (Line 4), and update sd(u)
or ed(u) accordingly (Lines 5–6); that is, if σ(u, v) ≥ ǫ, then
we increase sd(u) by one, otherwise, we decrease ed(u) by
one. After computing σ(u, v), we also update sd(v) or ed(v) if
v has not been explored (Lines 7–9). Moreover, the algorithm
can terminate early once ed(u) < µ (i.e., u is a non-core vertex)
or sd(u) ≥ µ (i.e., u is a core vertex) (Line 10).

Note that, at Lines 8–9, we also update the effective-degree
and similar-degree of an unexplored vertex. Thus, in this way, a
vertex v may be determined to be a core-vertex (i.e., sd(v) ≥ µ)
or a non-core vertex (i.e., ed(v) < µ) without exploring it.

Clustering Core Vertices. The pseudocode for clustering a
core vertex’s neighbors that are also core vertices is given in
Algorithm 5. We first assign the neighbors of u that are core
vertices and structure-similar to u to be in the same cluster as
u (Line 1–3). Then, for each of u’s neighbor v whose structural
similarity to u has not been computed, if u and v have not been
assigned to the same cluster yet (Line 5), then we compute
σ(u, v) (Line 6), and update sd(v) or ed(v) if v has not been
explored (Lines 7–9); furthermore, we assign u and v to be in
the same cluster if v has also been determined to be a core
vertex and is structure-similar to u (Line 10). Through Line 5,
we reduce the number of structural similarity computations for
vertex-pairs in Ec,c.

Clustering Non-core Vertices. Following Lemma 4.2, given
the set Cc of clusters of core vertices in G, non-core vertices in
G are assigned to clusters by C = {Cc

⋃

u∈Cc
Nǫ[u] | Cc ∈ Cc}.

Algorithm 5: ClusterCore(u)

1 N′[u]← {v ∈ N[u] | σ(u, v) has been computed};
2 for each vertex v ∈ N′[u] do
3 if sd(v) ≥ µ and σ(u, v) ≥ ǫ then union(u, v);

4 for each vertex v ∈ N[u]\N′[u] do
5 if find-subset(u) , find-subset(v) and ed(v) ≥ µ then
6 Compute σ(u, v);
7 if vertex v has not been explored then
8 if σ(u, v) ≥ ǫ then sd(v)← sd(v) + 1;
9 else ed(v)← ed(v) − 1;

10 if sd(v) ≥ µ and σ(u, v) ≥ ǫ then union(u, v);

Algorithm 6: ClusterNoncore

Input: The set Cc of clusters of core vertices

1 C← ∅;
2 for each Cc ∈ Cc do
3 C ← Cc;
4 for each u ∈ Cc do
5 for each v ∈ N[u] do
6 if sd(v) < µ and v < C then
7 Compute σ(u, v) if it has not been computed;
8 if σ(u, v) ≥ ǫ then C ← C ∪ {v};

9 C← C ∪ {C};

The pseudocode is shown in Algorithm 6; that is, for each
u ∈ Cc, we include all vertices in Nǫ[u] into the same cluster
as Cc. To do so, we iterate through every neighbor v of u (i.e.,
v ∈ N[u]), and check whether u and v are structure-similar.
Note that, here we compute σ(u, v) only if v is a non-core
vertex and v has not been assigned to the same cluster as Cc.
The reason is that, if v is also a core vertex, then whether u
and v belong to the same cluster has already been checked in
computing Cc since u is a core vertex. Thus, in this way, we
reduce the number of structural similarity computations for
vertex-pairs in Ec,n.

v7

v2

v1

v3 v4

v5
v6

Fig. 5: A graph

Running Example. Consider the graph in Figure 5 with
ǫ = 0.6 and µ = 4. The edges (u, v) with σ(u, v) ≥ ǫ are shown
in thick while other edges are thin edges. Firstly, v1 is explored
and determined to be a core vertex, and effective-degrees and
similar-degrees are updated as ed(v6) = 3, sd(v2) = sd(v3) =
sd(v5) = 1. Next, v3 is explored and determined to be a
core vertex, sd(v2) = sd(v5) = 2, sd(v4) = 1; v1 and v3 are
assigned to the same cluster. Now, v4 is being explored. As v2

is structure-similar to v4, the similar-degree of v2 is updated to
sd(v2) = 3, and v2 is a core vertex because v2 is also structure-
similar to itself; thus v2 and v4 are assigned to the same cluster.
Similarly, v5 and v4 are also assigned to the same cluster. Thus,
we obtain the cluster {v1, . . . , v5} without exploring v6 and v7.

A. Complexity Analysis and Implementation Details

Let Es ⊆ E be the set of adjacent vertex-pairs whose struc-
tural similarities have been computed. The time complexity of
our pSCAN approach is O(m · a(n) +

∑

(u,v)∈Es
min{d[u], d[v]}),

where a(n) is the extremely slowly growing inverse of the
single-valued Ackermann function and is less than 5 for prac-
tical values of n [8]; here, the first part of the time complexity
is related to disjoint-set data structure operations and the
second part is related to structural similarity computations.
As proved in [5],

∑

(u,v)∈E min{d[u], d[v]} ≤ 2α(G) · m where

α(G) ≤
√

m is the arboricity of a graph. Thus, the worst-
case time complexity of our approach is O(α(G) ·m), which is
the same as the SCAN algorithm and is worst-case optimal
as discussed in Section III. Note that, the space complexity
of pSCAN is also the same as SCAN (i.e., O(m + n)). In
the following, we discuss implementation details in order to
achieve the above complexities.

Accessing Vertices in Non-increasing Effective-degree Or-
der. At Line 5 of Algorithm 3, we access vertices in non-
increasing effective-degree order, where the effective-degree
of a vertex is dynamically updated (e.g., in Algorithms 4 and
5). Thus, we need a data structure for iteratively retrieving
elements with highest key values where key values of elements
are dynamically updated. Fibonacci heap can support these
operations; however, the time complexity is still too high and
moreover the data structure is too complicated to be practical.

We propose a bin-sort [8] like data structure for this
purpose based on the fact that the effective-degrees are integers
in the range of 1 to n. In the data structure, we have n bins, one
corresponding to each distinct effective-degree value; bin i con-
sists of a doubly-linked list linking together the set of vertices
with effective-degree i. Thus, updating the effective-degree of
a vertex can be accomplished in O(1) time by removing it
from one doubly-linked list and adding it to another one. The
total n operations of retrieving the vertex with the maximum
effective-degree can be achieved in O(n) time by maintaining
the maximum effective-degree of the remaining vertices, which
is non-increasing. Thus, the total time complexity related to
this data structure is O(m). Moreover, we update the effective-
degree of a vertex in the data structure lazily (i.e., only when it
is chosen as the next vertex with maximum effective-degree);
thus, singly-linked lists are sufficient.

Computing Structural Similarity. To compute the structural
similarity between vertices u and v, firstly we need to compute
N[u] ∩ N[v], then σ(u, v) can be computed by Equation (1)
in O(|N[u] ∩ N[v]|) time. N[u] ∩ N[v] can be computed in
O(min{d[u], d[v]}) time if we create a hash structure to store
all edges in E; for example, assume d[u] ≤ d[v], then for each
w ∈ N[u], w is in N[v] if and only if (v,w) is in the hash
structure which can be tested in constant time. Thus, the total
time complexity of computing structural similarities for all
pairs of adjacent vertices in Es is O(

∑

(u,v)∈Es
min{d[u], d[v]}).

However, building a hash structure incurs both extra time
and space which may be a significant overhead. Thus, we
consider an alternative approach. We assume that the input
graph is stored in the form of adjacency lists (each adjacency
list is represented by an array), and vertices in each adjacency
list are in increasing order according to their ids; that is, N[v]

for each vertex v ∈ V is a sorted list.2 Then, N[u] ∩ N[v]
can be computed by intersecting N[u] and N[v] which can
be accomplished in a sort-merge join style in O(d[u] + d[v])
time [8]. Note that, although this is theoretically inferior
to the above hash structure implementation, our experiments
demonstrate that this approach performs better in practice.

VI. Optimization Techniques

In this section, to speed up the checking of structure-
similar between two vertices (i.e., whether σ(u, v) ≥ ǫ), we
propose three optimization techniques, cross link, pruning
rules, and adaptive structure-similar checking, which will be
demonstrated in the following three subsections, respectively.

A. Cross Link

In Algorithm 3, the structural similarity between vertices
u and v is computed twice: one in the direction σ(u, v) when
exploring u and another in the direction σ(v, u) when exploring
v. Thus, if we link edge (u, v) with edge (v, u), then we only
need to compute the structural similarity between u and v once
which assigns both σ(u, v) and σ(v, u).

We propose to build a cross link for each edge which links
the two directions of the same edge, based on which the overall
number of structural similarity computations is expected to be
reduced by half. Since each adjacency list N[u] is an ordered
list by vertex ids, for an edge (u, v), its reverse edge (v, u) can
be found in N[v] by conducting a binary search on N[v]; the
time complexity is log d[v]. Thus, the total time complexity of
cross link is O(

∑

(u,v)∈E min{log d[u], log d[v]}).

B. Pruning Rule

In Algorithm 3, instead of computing the exact structural
similarity between vertices u and v, determining only whether
u and v are structure-similar is sufficient. Thus, we propose a
pruning rule in the following lemma, for efficiently determin-
ing that u and v are not structure-similar (i.e., σ(u, v) < ǫ).

Lemma 6.1: (Pruning Rule) For vertices u and v, if d[u] <
ǫ2 · d[v] or d[v] < ǫ2 · d[u], then σ(u, v) < ǫ.

Proof Sketch: We first prove that if d[u] < ǫ2 · d[v] then
σ(u, v) < ǫ. Given that d[u] < ǫ2 ·d[v], the structural similarity
between u and v is

σ(u, v) =
|N[u] ∩ N[v]|
√

d[u] · d[v]
≤ min{d[u], d[v]}
√

d[u] · d[v]

≤ d[u]
√

d[u] · d[v]
<

d[u]
√

d[u] · d[u]/ǫ2
= ǫ

The claim that if d[v] < ǫ2 · d[u] then σ(u, v) < ǫ can be
proved similarly. �

Note that, this pruning rule is tight. That is, there exist
graphs and vertices u and v, such that d[v] = ǫ2 · d[u] and
σ(u, v) ≥ ǫ; for example, assume d[v] = 2, d[u] = 8, (u, v) ∈ E,
and ǫ = 0.5, it is easy to verify that σ(u, v) = 0.5 = ǫ.

2Note that, all the n adjacency lists can be sorted altogether in O(m) time
by using radix sort combined with counting sort [8].

Algorithm 7: PruneAndCrossLink

1 for each vertex u ∈ V do
2 for each vertex v ∈ N[u] do

3 if d[u] < ǫ2 · d[v] or d[v] < ǫ2 · d[u] then
4 σ(u, v)← 0;
5 ed(u)← ed(u) − 1;

6 else Find edge (v, u) in N[v] using binary search,
and build cross link between (u, v) and (v, u);

The pseudocode for pruning and building cross link is
shown in Algorithm 7. For each edge (u, v) ∈ E (Lines 1–2),
we first apply the pruning rule in Lemma 6.1. If (u, v) is pruned
(Line 3), we assign an arbitrary small value less than ǫ (e.g.,
0) to σ(u, v) (Line 4), and decrease the effective-degree of u
(Line 5). Otherwise, we build the cross link between (u, v) and
(v, u). Since the time complexity of applying the pruning rule
in Lemma 6.1 for each edge is O(1). The total time complexity
of Algorithm 7 is the same as building cross link for all edges,
which is O(

∑

(u,v)∈E min{log d[u], log d[v]}).

C. Adaptive Structure-Similar Checking

In this subsection, we propose an adaptive approach to
terminating early without computing the exact structural sim-
ilarity when checking structure-similar between two vertices.
First, we compute the minimum number of common neighbors
between u and v, denoted cn(u, v), required for u and v to be
structure-similar, in the following lemma.

Lemma 6.2: Let cn(u, v) be the smallest integer no less than

ǫ ·
√

d[u] · d[v]; that is, cn(u, v) =
⌈

ǫ ·
√

d[u] · d[v]
⌉

. Then,

σ(u, v) ≥ ǫ if and only if |N[u] ∩ N[v]| ≥ cn(u, v).

Proof Sketch: Recall that, σ(u, v) =
|N[u]∩N[v]|√

d[u]·d[v]
. Thus σ(u, v) ≥

ǫ if and only if |N[u]∩N[v]| ≥ ǫ·
√

d[u] · d[v]. Moreover, |N[u]∩
N[v]| is an integer, thus |N[u] ∩ N[v]| ≥

⌈

ǫ ·
√

d[u] · d[v]
⌉

=

cn(u, v). �

Algorithm 8: CheckStructureSimilar

Input: A graph G = (V, E), vertices u and v, and a parameter
0 < ǫ ≤ 1; assume N[w] is sorted for each w ∈ V , and
let N[w]i denote the i-th vertex in N[w]

Output: Return true if σ(u, v) ≥ ǫ, and return false otherwise

1 cn(u, v)←
⌈

ǫ ·
√

d[u] · d[v]
⌉

; /* Compute the minimum

required common neighbors */;
2 cn← 0; i← 1; j← 1; du = d[u]; dv = d[v];
3 while cn < cn(u, v) ≤ min{du, dv} and i ≤ d[u] and j ≤ d[v] do
4 if N[u]i < N[v] j then
5 du ← du − 1; i← i + 1;

6 else if N[u]i > N[v] j then
7 dv ← dv − 1; j← j + 1;

8 else
9 cn← cn + 1; i← i + 1; j← j + 1;

10 if cn < cn(u, v) then return false;
11 else return true;

Following Lemma 6.2, we only need to check whether
|N[u]∩N[v]| ≥ cn(u, v) where cn(u, v) can be computed in O(1)
time. The pseudocode of checking structure-similar is shown

in Algorithm 8; here, we assume N[u] ∩ N[v] is computed in
a sort-merge join style. We terminate the checking early once
cn ≥ cn(u, v) (i.e., we have found at least cn(u, v) common
neighbors of u and v, thus σ(u, v) ≥ ǫ)), or du < cn(u, v)
or dv < cn(u, v) (i.e., there is not enough vertex remaining
for u and v to have at least cn(u, v) common neighbors, thus
σ(u, v) < ǫ). Algorithm 8 has the same time complexity
as computing the structural similarity between u and v (i.e.,
O(d[u] + d[v])).

VII. Experiments

We conduct extensive empirical studies to evaluate the
efficiency of our proposed approaches for structural graph
clustering. In specific, we evaluate the following algorithms:

• SCAN-HS: the algorithm in [27]; here, we use the
hash structure (HS) based method for structural simi-
larity computation as discussed in Section V-A.

• SCAN++: the state-of-the-art algorithm in [22].

• pSCAN-HS: the approach discussed in Section V with
the hash structure (HS) based method for structural
similarity computation.

• pSCAN: the approach discussed in Section V with
the sort-merge join method for structural similarity
computation.

• pSCAN-C: the pSCAN approach with the cross link
optimization in Section VI.

• pSCAN-CR: the pSCAN approach with both cross
link and pruning rule optimizations in Section VI.

• pSCAN∗: the pSCAN approach with all optimizations
in Section VI.

All algorithms are implemented in C++ and compiled
with GNU GCC with the -O2 optimization; the program
of SCAN++ is obtained from the authors in [22] and all
other algorithms are implemented by us. All experiments are
conducted on a machine with an Intel(R) Xeon(R) 2.9GHz
CPU and 32GB memory running Linux. All programs are run
as single-threaded programs with the entire graph held in the
main memory. We evaluate the performance of all algorithms
on both real and synthetic graphs as follows.

Graph #Edges #Vertices d c

ca-GrQc 13,422 4,158 6.46 0.557
ca-CondMat 91,286 21,363 8.55 0.642
email-EuAll 339,925 224,832 3.02 0.079
soc-Epinions 405,739 75,877 10.69 0.138

slashdot 468,554 77,350 11.12 0.055
dblp 1,049,866 317,080 6.62 0.632

amazon0601 2,443,311 403,364 12.11 0.418
web-Google 3,074,322 665,957 9.23 0.459

wiki-Talk 4,656,682 2,388,953 3.90 0.053
as-Skitter 11,094,209 1,694,616 13.09 0.258

LiveJournal 42,845,684 4,843,953 17.69 0.274
uk-2002 261,556,721 18,459,128 28.34 0.603

twitter-2010 1,202,513,344 41,652,230 57.7 0.073

TABLE I: Statistics of real graphs (d: average degree, c:
average clustering coefficient)

Real Graphs. We evaluate the algorithms on thirteen real
graphs, which are downloaded from the Stanford Network

Analysis Platform 3 and the Laboratory of Web Algorithmics 4;
descriptions of these graphs can also be found there. Sizes of
these graphs are shown in Table I, where the last two columns
show the average degree and the average clustering coefficient,
respectively. The graphs in Table I are sorted in increasing
order regarding the number of edges.

Graph #Edges #Vertices d c

LFR1 979,573 100,000 19.59 0.113
LFR2 974,076 100,000 19.48 0.213
LFR3 977,008 100,000 19.54 0.345
LFR4 977,008 100,000 19.54 0.459
LFR5 975,986 100,000 19.50 0.534
LFR6 978,117 100,000 19.56 0.601
LFR7 980,295 100,000 19.60 0.700

LFR8 9,755 1,000 19.50 0.400
LFR9 97,396 10,000 19.46 0.461

LFR10 9,784,242 1,000,000 19.56 0.457
LFR11 97,836,053 10,000,000 19.56 0.457

TABLE II: Statistics of LFR graphs

Synthetic Graphs. We also evalute the algorithms on LFR
benchmark graphs [18] by varying the number of vertices and
the average clustering coefficients of the graphs generated. The
number of vertices varies from 103 to 107, and the average
clustering coefficient varies from 0.1 to 0.7 according to that
of the real graphs in Table I. Similar to [22], we fix the average
degree and the maximum degree at 20 and 50, respectively. We
generate eleven LFR graphs, LFR1, . . ., LFR11, whose sizes
are shown in Table II.

Parameters. For each tested graph, we vary two parameters,
0 < ǫ ≤ 1 and µ ≥ 2 in a similar way to [22], for testing. For
ǫ, we choose 0.2, 0.4, 0.6, and 0.8, with ǫ = 0.6 as default.
For µ, we choose 2, 5, 10, and 15, with µ = 5 as default.

Metrics. For each testing, we run the algorithm three times
and report the average CPU time.

A. Performance Studies on Real-world Graphs

Due to space limits, we only show the results on four
default graphs, ca-CondMat, soc-Epinions, amazon0601, and
LiveJournal; the results on other graphs have similar trends.

Eval-I: Comparing pSCAN∗ with SCAN-HS and SCAN++.
We compare our best algorithm, pSCAN∗, with the existing
algorithms, SCAN-HS and SCAN++, by varying ǫ and µ.

Varying ǫ. The running time of SCAN-HS, SCAN++, pSCAN∗

by varying ǫ is illustrated in Figure 6. The running time of
SCAN-HS is steady for different ǫ values due to exhaustively
computing all structural similarities and thus irrelevant to ǫ.
SCAN++ takes slightly more time for larger ǫ. The reason
is that for larger ǫ, it is less likely for a vertex to be a core
vertex and thus less likely to prune the structural similarity
computation between vertices (say, u and v) that are common
neighbors of a vertex and its two-hop-away vertices. Note that,
the computation of structural similarity between vertices in
the common neighbors can be avoided only if there is a core
vertex in the common neighbors [22]. pSCAN∗ runs faster for
larger ǫ due to our three optimization techniques in Section VI.
When ǫ increases, two adjacent vertices are more likely to be
not structure-similar to each other; this can be pruned by our
pruning rule without computing the actual structural similarity.

3http://snap.stanford.edu/
4http://law.di.unimi.it/datasets.php

SCAN-HS SCAN++ pSCAN*

10
-2

10
-1

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(a) ca-CondMat

10
-1

10
0

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(b) soc-Epinions

10
-1

10
0

10
1

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(c) amazon0601

10
1

10
2

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(d) LiveJournal

Fig. 6: (Eval-I) Against Existing Algorithms (vary ǫ)

Overall, pSCAN∗ is significantly faster than SCAN-HS and
SCAN++ (≥ 10× faster for ǫ = 0.8). SCAN-HS has similar
performance as SCAN++, and sometimes even runs faster than
SCAN++, contrary to what is concluded in [22]. The reason is
that our implementation of SCAN-HS has a time complexity
of O(

∑

(u,v)∈E min{d(u), d(v)}), while a naive implementation
of structural similarity computation in SCAN will result in
a time complexity of at least O(

∑

(u,v)∈E max{d(u), d(v)}) =
O(
∑

v∈V (d(v))2).

SCAN-HS SCAN++ pSCAN*

10
-2

10
-1

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(a) ca-CondMat

10
-1

10
0

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(b) soc-Epinions

10
-1

10
0

10
1

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(c) amazon0601

10
1

10
2

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(d) LiveJournal

Fig. 7: (Eval-I) Against Existing Algorithms (vary µ)

Varying µ. The results of the three algorithms by varying

µ are shown in Figure 7. Both SCAN-HS and SCAN++
perform quite steady regarding the different values of µ. The
running time of pSCAN∗ decreases when µ increases. This
is because, when µ increases, more vertices can be pruned
to be core vertices by the effective-degree (see Section V)
in our approach; thus less structural similarity computations
between core vertices and faster running time. Hence, pSCAN∗

significantly outperforms both SCAN-HS and SCAN++.

Eval-II: Evaluating Our New Paradigm. In this testing, we
evaluate the efficiency of our new paradigm. In particular, we
compare pSCAN and pSCAN-HS with SCAN-HS.

Varying ǫ. Figure 8 presents the performances of pSCAN,

pSCAN-HS, and SCAN-HS by varying ǫ. Generally, the
running time of pSCAN and pSCAN-HS increases when ǫ be-
comes larger. This is because it is more costly to check whether
a vertex is a core vertex; that is, more structural similarities in-
volving the vertex need to be computed. From Figure 8, we can
see that both pSCAN and pSCAN-HS outperforms the baseline

SCAN-HS pSCAN-HS pSCAN

0.02

0.04

0.06

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(a) ca-CondMat

0.6

0.8

1

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(b) soc-Epinions

0.8

1.2

1.6

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(c) amazon0601

60

80

100

0.2 0.4 0.6 0.8
Pr

oc
es

si
ng

 T
im

e
(s

)
ε=

(d) LiveJournal

Fig. 8: (Eval-II) Evaluate Our New Paradigm (vary ǫ)

algorithm, SCAN-HS. Note that, pSCAN-HS and SCAN-HS
use the same approach for structural similarity computation.
Thus, this demonstrates that our new paradigm can reduce
the number of structural similarity computations. Moreover,
pSCAN outperforms pSCAN-HS; the only difference of these
two algorithms is that pSCAN uses sort-merge join to compute
structural similarities while pSCAN-HS uses a hash structure
which incurs a non-neglectable constant overhead.

SCAN-HS pSCAN-HS pSCAN

0.02

0.04

0.06

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(a) ca-CondMat

0.6

0.8

1

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(b) soc-Epinions

0.4

0.8

1.2

1.6

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(c) amazon0601

60

80

100

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(d) LiveJournal

Fig. 9: (Eval-II) Evaluate Our New Paradigm (vary µ)

Varying µ. The results of SCAN-HS, pSCAN-HS, and pSCAN

by varying µ are illustrated in Figure 9. The trends of
pSCAN and pSCAN-HS are similar to that of pSCAN∗ in
Figure 7. Overall, pSCAN outperforms pSCAN-HS which in
turn outperforms SCAN-HS. Thus, in the following, we only
consider the sort-merge join approach for structural similarity
computation, and we also ignore SCAN-HS from our testings.

Eval-III: Evaluating Our Optimization Techniques. We
evaluate the effect of our three optimization techniques, pro-
posed in Section VI, on the performance of our pSCAN
algorithm. Specifically, we compare pSCAN with pSCAN-C,
pSCAN-CR, and pSCAN∗. pSCAN-C is obtained from
pSCAN by adding the cross link optimization, and pSCAN-CR
has an additional pruning rule optimization, while pSCAN∗

integrates all three optimizations.

Varying ǫ. The experimental results of evaluating our optimiza-

tion techniques by varying ǫ are shown in Figure 10. pSCAN-C
has similar trends to pSCAN, since pSCAN-C only improves
upon pSCAN by the cross link optimization which may poten-
tially reduce the number of structural similarity computations
by half. Both pSCAN-CR and pSCAN∗ runs faster for larger

pSCAN pSCAN-C pSCAN-CR pSCAN*

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(a) ca-CondMat

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(b) soc-Epinions

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(c) amazon0601

0

20

40

60

80

0.2 0.4 0.6 0.8

Pr
oc

es
si

ng
 T

im
e

(s
)

ε=

(d) LiveJournal

Fig. 10: (Eval-III) Evaluate Optimization Techniques (vary ǫ)

ǫ. This is because more structural similarity computations
can be pruned by the pruning rule for larger ǫ. Overall,
pSCAN-C outperforms pSCAN due to cross link optimization,
pSCAN-CR outperforms pSCAN-C due to the pruning rule
optimization, and pSCAN∗ outperforms pSCAN-CR due to
the adaptive structure-similar checking optimization. In other
words, each of the three optimization techniques in Section VI
can improve the performance of the pSCAN algorithm.

pSCAN pSCAN-C pSCAN-CR pSCAN*

0

0.01

0.02

0.03

0.04

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(a) ca-CondMat

0

0.2

0.4

0.6

0.8

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(b) soc-Epinions

0.2

0.4

0.6

0.8

1

2 5 10 15

Pr
oc

es
si

ng
 T

im
e

(s
)

µ=

(c) amazon0601

0

20

40

60

80

2 5 10 15
Pr

oc
es

si
ng

 T
im

e
(s

)
µ=

(d) LiveJournal

Fig. 11: (Eval-III) Evaluate Optimization Techniques (vary µ)

Varying µ. Figure 11 illustrates the performance of our algo-

rithms with respect to different µ values. In general, all the
four algorithms run faster for larger µ. This is because more
vertices are non-core vertices and can be pruned based on
our effective-degree maintenance in Section V. Still, pSCAN∗

outperforms pSCAN-CR which in turn outperforms pSCAN-C,
with pSCAN performing the worst.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

ca-G
rQ

c

ca-C
ondMat

email-E
uAll

soc-E
pinions

slashdot
dblp

amazon0601

web-G
oogle

wiki-T
alk

as-S
kitte

r

LiveJournal

uk-2002

tw
itte

r-2
010

Pr
oc

es
sin

g
Ti

m
e (

s) SCAN++
pSCAN*

Fig. 12: Scalability Testing on Real Graphs (ǫ = 0.6, µ = 5)

Eval-IV: Scalability Testing. Here, we test the scalability
of our best algorithm, pSCAN∗, against the state-of-the-art
algorithm, SCAN++, on real graphs. The results are shown
in Figure 12. The thirteen graphs are organized in increasing
order regarding the number of edges. Generally, the running

time of both SCAN++ and pSCAN∗ increases along with the
increasing of the number of edges in a graph. Nevertheless,
pSCAN∗ consistently outperforms SCAN++. Noticeably, on
three of the tested graphs, email-EuAll, wiki-Talk, and as-
Skitter, our pSCAN∗ algorithm outperforms the state-of-the-art
algorithm, SCAN++, by two orders of magnitude. Moreover,
our pSCAN∗ algorithm scales well to large graphs; for exam-
ple, for the twitter graph with 1 billion edges with ǫ = 0.6 and
µ = 5, pSCAN∗ computes the structural graph clustering in 25
minutes while SCAN++ cannot finish even after 24 hours.

B. Performance Studies on Synthetic Graphs

In this subsection, we evaluate the performance of our
pSCAN∗ algorithm against the state-of-the-art algorithm,
SCAN++, on synthetic graphs.

Eval-V: Comparing pSCAN∗ with SCAN++ on LFR
Graphs. The results of running these two algorithm on LFR
graphs by varying the average clustering coefficient is shown
in Figure 13(a), where x-axis shows the average clustering
coefficient (c) corresponding to graphs LFR1, . . ., LFR7 in
Table II. We can see that, the running time of SCAN++ drops
when c becomes larger; this conforms with that in [22]. Our
pSCAN∗ algorithm takes relatively longer time for graphs with
larger clustering coefficients; this is because more structural
similarity computations are needed. Nevertheless, our pSCAN∗

still runs much faster than SCAN++ even for very large
average clustering coefficient (e.g., c = 0.7).

SCAN++ pSCAN*

0

0.4

0.8

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Pr
oc

es
si

ng
 T

im
e

(s
)

c=

(a) Vary clustering coefficient

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
4

10
5

10
6

10
7

10
8

Pr
oc

es
si

ng
 T

im
e

(s
)

Number of edges

(b) Vary #Edges (c = 0.4)

Fig. 13: (Eval-V) Evaluate on LFR Graphs (ǫ = 0.6, µ = 5)

The experimental results by varying the numbers of edges
(thus also vertices) of LFR graphs are shown in Figure 13(b).
Both algorithms scale well with the number of vertices, and
our pSCAN∗ algorithm consistently outperforms SCAN++.

VIII. Conclusion

In this paper, we developed a new paradigm for structural
graph clustering based on our three observations. Based on
the paradigm, we proposed a new approach aiming to reduce
the number of structural similarity computations. To improve
the performance of our approach, we further proposed three
optimization techniques to speed up the checking of structure-
similar between two vertices. We proved that the existing
SCAN approach as well as our new approach are worst-case
optimal. Experiments show that our approach outperforms the
existing approaches by over one order of magnitude.

Acknowledgement. Lijun Chang is supported by ARC
DE150100563 and ARC DP160101513. Xuemin Lin is sup-
ported by NSFC61232006, ARC DP140103578 and ARC
DP150102728. Lu Qin is supported by ARC DE140100999
and ARC DP160101513. Wenjie Zhang is supported by ARC
DP150103071 and ARC DP150102728.

References

[1] L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in
sparse graphs. Algorithmica, 66(1), 2013.

[2] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang. Efficiently
computing k-edge connected components via graph decomposition. In
Proc. of SIGMOD’13, 2013.

[3] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core decomposition
in massive networks. In Proc. of ICDE’11, 2011.

[4] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal
cliques in massive networks by h*-graph. In Proc. of SIGMOD’10,
2010.

[5] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comput., 14(1), 1985.

[6] A. Clauset. Finding local community structure in networks. Phys. Rev.

E, 72, 2005.

[7] A. Clauset, M. E. J. Newman, , and C. Moore. Finding community
structure in very large networks. Physical Review E, 2004.

[8] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction

to Algorithms. McGraw-Hill Higher Education, 2001.

[9] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search of
overlapping communities. In Proc. of SIGMOD’13, 2013.

[10] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities
in large graphs. In Proc. of SIGMOD’14, 2014.

[11] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max
cut algorithm for graph partitioning and data clustering. In Proc. of

ICDM’01, 2001.

[12] S. Fortunato. Community detection in graphs. CoRR, abs/0906.0612,
2009.

[13] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press.

[14] R. Guimerà and L. A. Nunes Amaral. Functional cartography of
complex metabolic networks. Nature, 433(7028), February 2005.

[15] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss
community in large and dynamic graphs. In Proc. of SIGMOD’14,
2014.

[16] P. Jiang and M. Singh. Spici: a fast clustering algorithm for large
biological networks. Bioinformatics, 26(8), 2010.

[17] U. Kang and C. Faloutsos. Beyond ’caveman communities’: Hubs and
spokes for graph compression and mining. In Proc. of ICDM’11, 2011.

[18] A. Lancichinetti and S. Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Phys. Rev. E, 80, Jul 2009.

[19] S. Lim, S. Ryu, S. Kwon, K. Jung, and J. Lee. Linkscan*: Overlapping
community detection using the link-space transformation. In Proc. of

ICDE’14, 2014.

[20] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review, E 69(026113), 2004.

[21] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell., 22(8), 2000.

[22] H. Shiokawa, Y. Fujiwara, and M. Onizuka. SCAN++: efficient
algorithm for finding clusters, hubs and outliers on large-scale graphs.
PVLDB, 8(11), 2015.

[23] M. Sozio and A. Gionis. The community-search problem and how to
plan a successful cocktail party. In Proc. of KDD’10, 2010.

[24] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-
node graph. In Proc. of ICDE’14, 2014.

[25] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On triangulation-
based dense neighborhood graph discovery. Proc. VLDB Endow., 4(2),
Nov. 2010.

[26] D. Watts and S. Strogatz. Collective dynamics of ’small-world’
networks. Nature, (393), 1998.

[27] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: a structural
clustering algorithm for networks. In Proc. of KDD’07, 2007.

[28] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Out-of-core coherent
closed quasi-clique mining from large dense graph databases. ACM

Trans. Database Syst., 32(2), June 2007.

[29] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing
triangle k-core motifs within networks. In Proc. of ICDE’12, 2012.

