Cohesive Subgraph Computation over Large Sparse Graphs

Lijun Chang
lijun.chang@sydney.edu.au

Lu Qin
lu.qin@uts.edu.au

The University of Sydney
UTS

Slides: lijunchang.github.io/icde19_tutorial.pdf
Outline

- Background
- Core Decomposition
- Densest Subgraph Computation
- Higher-order Dense Subgraph Computation
- Future Directions
Graphs are Everywhere

Social networks

Web graphs

Graph of texts

Internet of things
Graph Model is Simple

- A graph $G(V, E)$ consists of a set of vertices V and a set of edges E

We are interested in analyzing the topological structure of real graphs!
Real Graphs are not Random Graphs

- Real graphs are not random graphs (e.g., the Erdos-Renyi random graph model), but have fascinating patterns and properties.
 - The degree distribution is skewed, following a power-law

![Degree distributions](image)
Real Graphs are not Random Graphs

- Real graphs are not random graphs (e.g., the Erdos-Renyi random graph model), but have fascinating patterns and properties.
 - Real graphs are globally sparse but locally dense
 - The entire graph is sparse, but there are groups of vertices with high concentration of edges within them

<table>
<thead>
<tr>
<th>Graphs</th>
<th>n</th>
<th>m</th>
<th>$d_{\text{avg}}(G)$</th>
<th>$d_{\text{max}}(G)$</th>
<th>$\omega(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-Skitter</td>
<td>1,694,616</td>
<td>11,094,209</td>
<td>13.09</td>
<td>35,455</td>
<td>67</td>
</tr>
<tr>
<td>soc-LiveJournal1</td>
<td>4,843,953</td>
<td>42,845,684</td>
<td>17.69</td>
<td>20,333</td>
<td>321</td>
</tr>
<tr>
<td>uk-2005</td>
<td>39,252,879</td>
<td>781,439,892</td>
<td>39.82</td>
<td>1,776,858</td>
<td>589</td>
</tr>
<tr>
<td>it-2004</td>
<td>41,290,577</td>
<td>1,027,474,895</td>
<td>49.77</td>
<td>1,326,744</td>
<td>3,222</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>41,652,230</td>
<td>1,202,513,046</td>
<td>57.74</td>
<td>2,997,487</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1: Statistics of five real graphs ($\omega(G)$ is the clique number of G)

We are interested in finding “dense” subgraphs from large real graphs!
Informal Problem Definition

- Given a large sparse graph (e.g., social network, communication network, information network, biological network), find subgraphs that are densely connected or build a hierarchical structure for all dense subgraphs.
Applications of Finding Dense Subgraphs

- It has applications in any context that information can be encoded as a graph

- For example, dense subgraphs correspond to
 - Communities in social networks
 - Groups of web pages dealing with the same or related topics in World Wide Web
 - Groups of proteins having the same specific function within the cell in biology
 - Functional modules such as cycles and pathways in metabolic networks
 - Compartments in food webs
 - Stories in twitter data
 -
Focus of this Tutorial

- In this tutorial, we mainly focus on the fundamental technical developments of efficient dense subgraph computation.
 - Efficiency is an important issue when analysing large graphs.
Where to Find Large Real Graphs?

- Stanford Network Analysis Project (SNAP) [Leskovec and Krevl 2014]
 - From medium to large graphs. It includes social networks, web graphs, road networks, internet networks, citation networks, collaboration networks, and communication networks.
 - com-Friendster: 65 million vertices, 1.8 billion edges.

- Laboratory for Web Algorithmics (LAW) [Boldi and Vigna 2004]
 - Large graphs with size up to 1 billion vertices and tens of billions of edges. The networks are mainly web graphs and social networks.
 - eu-2015: 1 billion vertices, 91 billion edges.

- Network Repository [Rossi and Ahmed 2015]
 - Thousands of graphs with up to billions of vertices and tens of billions of edges.
How to Store Large Sparse Graph in Memory?

- Graph representation
 - Adjacency Matrix ❌
 - Cannot store graph with over 10^5 vertices
 - Adjacency Lists ❌
 - Better, but requires $4m$ integers
 - Adjacency Array or Compressed Sparse Row (CSR)
 - Represents an undirected graph by $2m+n+O(1)$ integers

n: the number of vertices
m: the number of undirected edges
The Adjacency Array (CSR) Representation

- An example graph

- Its adjacency array representation

Neighbors of v_3
Cohesive/Dense Subgraph Computation

- Given a graph $G = (V, E)$ with vertices V and edges $E \subseteq V \times V$, we aim to efficiently compute dense subgraphs in G.
 - Either compute the subgraph with the highest density, or compute all (maximal) subgraphs whose density are larger than a threshold (e.g., k)
 - $n = |V|$
 - $m = |E|$

- How to measure the density of a (sub)-graph?
 - Edge ratio ($2m/(n(n-1))$): ratio of the number of edges to the maximum possible number of edges
 - However, small graphs usually have higher edge ratio. E.g., triangle
 - Average degree ($2m/n$)
 - Minimum degree
Cohesiveness Measures

- Minimum degree: core decomposition
 - Minimum number of edges each vertex participates in

- Average degree: densest subgraph
 - Average number of edges each vertex participates in

- Higher order
 - Minimum number of triangles each edge participates in: truss decomposition
 - Average number of k-cliques each vertex participates in: k-clique densest subgraph

- Edge connectivity

- ...
Outline

- Background
- Core Decomposition
- Densest Subgraph Computation
- Higher-order Dense Subgraph Computation
- Future Directions
Core Decomposition

- **k-core**: the maximal subgraph in which every vertex has degree at least k within the subgraph
- Core number $\text{core}(u)$ of a vertex: the largest k for which the k-core contains the vertex

Example:

\[G_0 = G \]
\[G_1 = \text{1-core of } G \]
\[G_2 = \text{2-core of } G \]
\[G_3 = \text{3-core of } G \]
\[G_0 \supseteq G_1 \supseteq G_2 \supseteq G_3 \]

[Malliaros et al 2016]
Core Decomposition

- Core decomposition: compute the core numbers of all vertices
 - k-core is the subgraph induced by all vertices with core numbers at least k

Example:

$G_0 = G$
$G_1 = 1$-core of G
$G_2 = 2$-core of G
$G_3 = 3$-core of G

$G_0 \supseteq G_1 \supseteq G_2 \supseteq G_3$

[Malliaros et al 2016]
K-core size Distribution

![Graphs showing core size distribution for different datasets: (a) as-Skitter, (b) soc-LiveJournal1, (c) it-2004, (d) twitter-2010.](image)

Fig. 3.2: Number of vertices and edges in (Giant Component of) k-core (varying k)
The Peeling Algorithm

- Basic idea for computing k-core: iteratively remove all vertices whose degree are smaller than k.
 - Core decomposition: iterate the process for k values increasing from 1

Naively going though all vertices to find a vertex of degree smaller than k in each iteration will result in $O(n^2)$ time algorithm
A Linear-time Implementation

- Using a data structure to dynamically maintain the vertices of a specific degree, results in $O(m)$ algorithm
The Peeling Algorithm

- To compute k-core, we can remove an arbitrary vertex among all vertices of degree smaller than k.

- In practice, the peeling algorithm usually refers to the algorithm that iteratively removes the vertex with the smallest degree.
 - The previous data structure still can implement this algorithm to run in $O(m)$ time.
Other Applications of the Peeling Algorithm

- It computes the degeneracy $\delta(G)$ of a graph G
 - $\delta(G)$ is the maximum value among the minimum vertex degrees of all subgraphs of G
 - Each subgraph of G has a vertex with small degree (i.e., $\leq \delta(G)$)
 - There exists a subgraph with minimum degree $\delta(G)$
 - $\delta(G)$ equals the largest core number in core decomposition
 - $\delta(G) \leq \lceil \sqrt{2m + n} \rceil$
 - $\delta(G)$ measures how sparse a graph is

<table>
<thead>
<tr>
<th>Graphs</th>
<th>n</th>
<th>m</th>
<th>$d_{avg}(G)$</th>
<th>$d_{max}(G)$</th>
<th>$\delta(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-Skitter</td>
<td>1,694,616</td>
<td>11,094,209</td>
<td>13.09</td>
<td>35,455</td>
<td>111</td>
</tr>
<tr>
<td>soc-LiveJournal1</td>
<td>4,843,953</td>
<td>42,845,684</td>
<td>17.69</td>
<td>20,333</td>
<td>372</td>
</tr>
<tr>
<td>uk-2005</td>
<td>39,252,879</td>
<td>781,439,892</td>
<td>39.82</td>
<td>1,776,858</td>
<td>588</td>
</tr>
<tr>
<td>it-2004</td>
<td>41,290,577</td>
<td>1,027,474,895</td>
<td>49.77</td>
<td>1,326,744</td>
<td>3,224</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>41,652,230</td>
<td>1,202,513,046</td>
<td>57.74</td>
<td>2,997,487</td>
<td>2,488</td>
</tr>
</tbody>
</table>

Table 1.1: Statistics of five real graphs ($\delta(G)$ is the degeneracy of G)
Other Applications of the Peeling Algorithm

- It computes the degeneracy $\delta(G)$ of a graph G
- It computes a degeneracy ordering of vertices of G
 - A permutation (v_1, v_2, \ldots, v_n) of all vertices of G is a degeneracy ordering of G if every vertex v_i has the minimum degree in the subgraph induced by $\{v_i, \ldots, v_n\}$.
 - If we orient the graph according to a degeneracy ordering, then the maximum out-degree of the resulting directed graph is $\delta(G)$

![Diagram showing maximum degree and maximum out-degree](image)
Other Applications of the Peeling Algorithm

- It computes the degeneracy $\delta(G)$ of a graph G
- It computes a degeneracy ordering of vertices of G
- It computes an approximate value for the arboricity $\alpha(G)$ of a graph G
 - $\alpha(G)$ is the minimum number of forests needed to cover all edges of a graph
 - $\alpha(G)$ is frequently used in analyzing time complexities of algorithms, especially triangle enumeration/counting related algorithms
- Degeneracy $\delta(G)$ tightly bounds the arboricity $\alpha(G)$ of a graph: $\alpha(G) \leq \delta(G) < 2 \times \alpha(G)$
Other Applications of the Peeling Algorithm

- It computes the degeneracy $\delta(G)$ of a graph G
- It computes a degeneracy ordering of vertices of G
- It computes an approximate value for the arboricity $\alpha(G)$ of a graph G
- It computes an approximate solution to the densest subgraph (will be covered later)
H-index-based Local Algorithm

- The peeling algorithm is inherently sequential, and has limited parallelizability.

- There is an H-index-based local algorithm that works well in practice for different settings
 - e.g., parallel setting, distributed setting, I/O-efficient setting, in-memory

- Given a multi-set S of positive numbers, h-index(S) is the largest integer k such that $|\{s \in S : s \geq k\}| \geq k$
 - E.g. h-index({1,1,1,1}) = 1
 - h-index({4,3,2,1}) = 2
H-index-based Local Algorithm

- **Fact 1**: let $C_u = \{\text{core}(v): v \in N(u)\}$, then $\text{core}(u) = h\text{-index}(C_u)$
 - Let $k = \text{core}(u)$, u must have at least k neighbors in the k-core.

- **Fact 2**: let $\overline{\text{core}}(v)$ be an upper bound of $\text{core}(v)$ and $\overline{C}_u = \{\overline{\text{core}}(v): v \in N(u)\}$, then $h\text{-index}(\overline{C}_u)$ is an upper bound of $\text{core}(u)$
H-index-based Local Algorithm

- Fact 1: let $C_u = \{\text{core}(v) : v \in N(u)\}$, then $\text{core}(u) = h\text{-index}(C_u)$
- Fact 2: let $\tilde{C}_u = \{\text{core}(v) : v \in N(u)\}$, then $\text{core}(u) \leq h\text{-index}(\tilde{C}_u)$

- Algorithm:
 - Initialize $\text{core}(v)$ to be the degree of v for all vertices
 - Repeat until converge: reassign $\text{core}(u)$ as $h\text{-index}(\tilde{C}_u)$ for all vertices

- h-index is monotone
 - The upper bounds cannot increase
 - The upper bounds converge to the true core numbers.

- Optimization: do not need to update the upper bound for every vertex in each iteration
H-index-based Local Algorithm

Fig. 3.5: Number of updates in different iterations
H-index-based Local Algorithm

- Empirical in-memory running time comparison (in seconds)

<table>
<thead>
<tr>
<th>Graph G</th>
<th>Peel</th>
<th>CoreD-Local-opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-Skitter</td>
<td>0.550</td>
<td>0.645</td>
</tr>
<tr>
<td>soc-LiveJournal1</td>
<td>4.232</td>
<td>7.765</td>
</tr>
<tr>
<td>uk-2005</td>
<td>26.338</td>
<td>17.535</td>
</tr>
<tr>
<td>it-2004</td>
<td>28.647</td>
<td>24.810</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>134</td>
<td>369</td>
</tr>
</tbody>
</table>

- The running time highly depends on the processing order of vertices
 - E.g., if processing vertices in the degeneracy ordering, then the time complexity is linear
Other Works on Core Decomposition

- Core decomposition for dynamic graph
 - How to maintain the core number when graph changes?
 - [Zhang et al 2017]

- Core decomposition for uncertain graph
 - [Bonchi et al 2014]

- Core decomposition for directed graph
 - [Giatsidis et al 2011]
Outline

- Background
- Core Decomposition
- Densest Subgraph Computation
- Higher-order Dense Subgraph Computation
- Future Directions
Densest Subgraph

- Find the subset S of vertices in G where the induced subgraph of G by S has the largest average degree among all subsets
Greedy-based Approximation Algorithm

- Iteratively remove the vertex with the minimum degree from the graph (This is the same as the previous peeling algorithm)
 - We obtain n subgraphs during the process
 - Return the one with the maximum average degree as the result

- Time complexity: $O(m)$
Greedy-based Approximation Algorithm

- Approximation ratio
 - Density $\rho(S)$ of S: total number of edges divided by total number of vertices (half of the average degree)
 - Upper bound of the maximum density $\rho(S^*)$

Lemma 4.2. For any graph G, let S^* be the densest subgraph of G, then the minimum degree of S^* is no smaller than $\rho(S^*)$, i.e.,

$$d_{\text{min}}(S^*) \geq \rho(S^*).$$

- $\rho(S^*) \leq d_{\text{min}}(S^*) \leq \delta(G)$: recall $\delta(G)$ is the maximum value among the minimum vertex degrees of all subgraphs of G
- Let’s look at the $\delta(G)$-core: recall there exists a subgraph with minimum degree $\delta(G)$
 - Its density is at least $\delta(G)/2 \geq \rho(S^*)/2$
- The approximation ratio of the greedy algorithm is $1/2$
Goldberg’s Algorithm for Densest Subgraph

[Goldberg 1984]

- Decision version of the densest subgraph problem: Is there a subgraph \(S \) with density larger than \(\lambda \)?
 - \(\rho(S) \): density of \(S \) (half of the average degree)
 - \(\bar{S} \): vertices of \(G \) not in \(S \)
 - \(E(S, \bar{S}) \): edges between \(S \) and \(\bar{S} \)

\[
\rho(S) > \lambda \\
\iff 2|E(S)| > 2\lambda|S| \\
\iff \sum_{u \in S} d(u) - |E(S, \bar{S})| > 2\lambda|S| \\
\iff \sum_{u \in S} d(u) + \sum_{u \in \bar{S}} d(u) - \sum_{u \in \bar{S}} d(u) - |E(S, \bar{S})| > 2\lambda|S| \\
\iff \sum_{u \in \bar{S}} d(u) + |E(S, \bar{S})| + 2\lambda|S| < 2|E|
\]
Goldberg’s Algorithm for Densest Subgraph

There is S s.t. $\rho(S) > \lambda \iff \sum_{u \in \bar{S}} d(u) + |E(S, \bar{S})| + 2\lambda |S| < 2|E|$

- $\lambda < \rho(S^*)$ iff the minimum cut of G_λ is of value smaller than 2m
- $\lambda \geq \rho(S^*)$ iff the minimum cut of G_λ is of value exactly 2m

[Goldberg 1984]

[Gionis and Tsourakakis 2015]
Goldberg’s Algorithm for Densest Subgraph

[Goldberg 1984]

- Thus, we can do binary search on λ.
 - When λ is smaller than but very close to $\rho(S^*)$, then the minimum cut of the graph G_λ corresponds to a densest subgraph of G.

- But λ is a fractional number, when to stop?
 - For any two subgraphs S_1 and S_2 with $\rho(S_1) > \rho(S_2)$, it holds that $\rho(S_1) - \rho(S_2) \geq \frac{1}{n(n-1)}$.

- Time complexity of Goldberg’s algorithm
 - $O(\log n)$ minimum cut computations, each for a different λ value.
 - By using parametric maximum flow techniques, can be implemented to run in $O(n \cdot m \cdot \log \frac{n^2}{m})$ time.
Data Reduction for Densest Subgraph Computation

- Goldberg’s algorithm cannot be directly applied to large graphs, due to the high time complexity.

- We can reduce the graph instance for Goldberg’s algorithm.
 - Real-world graphs are power-law graphs, many vertices are of small degree and thus cannot be in the densest subgraph.

Lemma 4.2. For any graph G, let S^* be the densest subgraph of G, then the minimum degree of S^* is no smaller than $\rho(S^*)$, i.e.,

$$d_{\text{min}}(S^*) \geq \rho(S^*).$$

- The density of the $\delta(G)$-core is at least $\delta(G)/2$.
- Thus, we can remove all vertices whose degree are smaller than $\delta(G)/2$.
Data Reduction for Densest Subgraph Computation

- Thus, to exactly compute the densest subgraph, we only need to consider the $\delta(G)/2$-core, rather than the entire graph.

![Graphs showing number of vertices and edges in k-core](image)

Fig. 3.2: Number of vertices and edges in (Giant Component of) k-core (varying k)
Data Reduction for Densest Subgraph Computation

- In practice, we can first run the greedy algorithm to get an approximate densest subgraph S, and then run Goldberg’s algorithm on the $[\rho(S)]$-core of G.

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Original size</th>
<th>Reduced size</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>m</td>
<td>n'</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>1,694,616</td>
<td>11,094,209</td>
<td>915</td>
</tr>
<tr>
<td>soc-LiveJournal1</td>
<td>4,843,953</td>
<td>42,845,684</td>
<td>3,639</td>
</tr>
<tr>
<td>uk-2005</td>
<td>39,252,879</td>
<td>781,439,892</td>
<td>51,784</td>
</tr>
<tr>
<td>it-2004</td>
<td>41,290,577</td>
<td>1,027,474,895</td>
<td>4,279</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>41,652,230</td>
<td>1,202,513,046</td>
<td>11,619</td>
</tr>
</tbody>
</table>

Table 4.2: Densest subgraph computation
Other Works on Densest Subgraph Computation

- The densest subgraph can also be computed by linear programming
 - [Charikar 2000]

- Densest subgraph computation in dynamic graphs
 - [Epasto et al 2015]

- Locally densest subgraph
 - [Qin et al 2015]

- Density-friendly graph decomposition
 - [Danish et al 2017]
Outline

- Background
- Core Decomposition
- Densest Subgraph Computation
- Higher-order Dense Subgraph Computation
- Future Directions
Higher-order Structures

- Previous, we focused on vertices and edges

- Now, let’s consider higher-order structures, k-cliques (complete graphs with k vertices), which usually will find denser subgraphs
 - A vertex is a 1-clique
 - An edge is a 2-clique
 - A triangle is a 3-clique

- Higher-order core decomposition
 - Truss decomposition
 - Nucleus decomposition

- Higher-order densest subgraph
Truss Decomposition

- **k-truss**: the *maximal* subgraph in which every *edge* participates in at least *k* triangles
- **k-core**: the maximal subgraph in which every *vertex* participates in at least *k* edges
- Like *k*-cores, *k*-trusses are nested

![3-truss](image)
Truss Decomposition

- Truss number $\text{truss}(u,v)$ of an edge: the largest k for which the k-truss contains the edge
- Truss decomposition: compute the truss number for each edge
 - k-truss is the subgraph induced by all edges with truss numbers at least k
Computing Truss Decomposition

- Extend the peeling algorithm
 - Iteratively remove the edge that participates in the fewest number of triangles
 - How to efficiently compute the number of triangles for each vertex?
 - How to efficiently update the number of triangles after deleting one edge?

- This needs an efficient triangle enumeration algorithm.
Triangle Enumeration

- How to efficiently enumerate all triangles in a graph?

- How about enumerating wedge (v,u,w) and check the existence of edge (v,w)?
 - The time complexity will be $\sum_{u \in V} (d(u))^2$
 - This is higher than $m^2/3$, which bounds the maximum number of triangles
 - E.g., consider a star graph
Triangle Enumeration

- We can improve the time complexity by orienting the input graph.

- How about enumerating wedge \((v,u,w)\) and check the existence of edge \((v,w)\)?
 - The time complexity will be \(\sum_{u \in V} (d^+(u))^2\)
 - This can be small if we orient the graph smartly.
Triangle Enumeration

How about enumerating wedge \((v,u,w)\) and check the existence of edge \((v,w)\)?

![Diagram](image_url)

Lemma 5.4. Assume \(G^+\) is obtained from \(G\) based on the degeneracy ordering, then

\[
\sum_{u \in V} (d^+(u))^2 \leq \delta(G) \times m.
\]

Recall that \(\delta(G) \leq \left\lfloor \sqrt{2m + n} \right\rfloor\)

The total number of wedges checked is \(O(m^3)\)

How to check the existence of an edge? Hash table!
Hash table has both space and time overhead. Can we avoid the hash-table? Yes!

Arrange the edge-existence checking in a smart way.

- Construct the oriented graph $G^+ = (V, E^+)$ of G with respect to \prec;
- for each vertex $u \in V$
 - for each out-neighbor $v \in N^+(u)$ do Mark v;
 - for each out-neighbor $v \in N^+(u)$ do
 - for each out-neighbor $w \in N^+(v)$ do
 - if w is marked then
 - Output triangle $\triangle_{u,v,w}$;
 - for each out-neighbor $v \in N^+(u)$ do Unmark v;

This is to check whether u is connected to its 2-hop out-neighbor w
- All such checks for the same u are grouped together. Hash table is not needed!
- The time complexity is no longer $\sum_{u \in V} (d^+(u))^2$
 - but $\sum_{v \in V} (d^+(v) \times d^-(v))$
Triangle Enumeration

1. Construct the oriented graph $G^+ = (V, E^+)$ of G with respect to \prec;
2. for each vertex $u \in V$ do
 3. for each out-neighbor $v \in N^+(u)$ do Mark v;
 4. for each out-neighbor $v \in N^+(u)$ do
 5. for each out-neighbor $w \in N^+(v)$ do
 6. if w is marked then
 7. Output triangle $\Delta_{u,v,w}$;
 8. for each out-neighbor $v \in N^+(u)$ do Unmark v;

Lemma 5.5. Assume G^+ is obtained from G based on the degeneracy ordering, then
\[
\sum_{u \in V} d^-(u) \times d^+(u) \leq (2\alpha(G) - 1) \times m. \quad \alpha(G) \leq \left\lfloor \frac{\sqrt{2m + n}}{2} \right\rfloor
\]

Lemma 5.3. Assume G^+ is obtained from G based on the degree decreasing ordering, then
\[
\sum_{u \in V} d^-(u) \times d^+(u) \leq 2 \times \alpha(G) \times m.
\]

As computing degeneracy ordering takes a significant portion of the total time, degree decreasing or increasing ordering is used in practice.
Computing Truss Decomposition

- Extend the peeling algorithm
 - Iteratively remove the edge that participates in the fewest number of triangles
 - How to efficiently compute the number of triangles for each vertex?
 - Enumerate all triangles by the algorithm in previous slide
 - How to efficiently update the number of triangles after deleting one edge \((u, v)\)?
 - Intersect the neighbor-sets of \(u\) and \(v\) in \(\min\{d(u), d(v)\}\) time
 Hash table is needed here!

- The algorithm runs in \(O(\alpha(G) \times m)\) time
 - \(\alpha(G)\) is the arboricity of \(G\), and is small for real graphs

\[
\sum_{(u, v) \in E^+} \min\{d(u), d(v)\} \leq 2 \times \alpha(G) \times m
\]
Nucleus Decomposition

- k-(r,s)-nucleus: the maximal union g of s-cliques in G such that for each r-clique C in g, there are at least k s-cliques in g containing C.

 - k-core is a k-$(1,2)$-nucleus
 Iteratively remove vertices with fewer than k edges containing the vertex, the remaining edges form the k-core

 - k-truss is a k-$(2,3)$-nucleus
 Iteratively remove edges with fewer than k triangles containing the edge, the remaining triangles form the k-truss

Iteratively remove r-cliques with fewer than k s-cliques containing the r-clique, the remaining s-cliques form the k-(r,s)-nucleus?

Yes!
Nucleus Decomposition

- Iteratively remove \(r \)-cliques with fewer than \(k \) \(s \)-cliques containing the \(r \)-clique, the remaining \(s \)-cliques form the \(k-(r,s) \)-nucleus.
- Let’s consider the hyper-graph \(G = (V, E) \):
 - \(V \) is the set of \(r \)-cliques in \(G \)
 - \(E \) is the set of \(s \)-cliques in \(G \) (hyper-edges)
 - Each hyper-edge (\(s \)-clique) in \(G \) connects to all \(r \)-cliques contained in the \(s \)-clique.
 - In truss decomposition, \(r = 2 \) and \(s = 3 \).

Fig. 5.4: Bipartite graph for nucleus decomposition
k-clique Enumeration

- How to efficiently enumerate k-cliques?
- Extend the graph orientation-based triangle enumeration algorithm
 - Orient the input undirected graph to be a directed graph
 - For each vertex u in G
 - Enumerate $(k-1)$-cliques in the subgraph of G induced by u’s out-neighbors

Each k-clique of G will be enumerated exactly once!
Algorithm 23: KClique-Oriented: enumerate all k-cliques in a graph [24]

Input: An undirected graph $G = (V, E)$, and an integer k

Output: All k-cliques in G

1. Compute the degeneracy ordering of V;
2. Construct the oriented graph $G^+ = (V, E^+)$ of G with respect to the degeneracy ordering;
3. $C \leftarrow \emptyset$;
4. KClique-EnumO(G^+, k, C);

Procedure KClique-EnumO(G^+_k, k, C)

5. if $k = 2$ then
 6. for each edge $(u, v) \in E(G^+_k)$ do
 7. Output clique $\{u, v\} \cup C$;
 8. else
 9. for each vertex $u \in V(G^+_k)$ do
 10. $G_{k-1}^+ \leftarrow$ the subgraph of G^+_k induced by $N_{G^+_k}(u)$;
 11. KClique-EnumO($G^+_k_{k-1}, k-1, C \cup \{u\}$);

- All k-cliques can be enumerated in $O(k \times (\alpha(G))^{k-2} \times m)$ total time
Higher-order Densest Subgraph

- k-clique densest subgraph: find the subgraph g of G, such that the average number of k-cliques per vertex in g is the largest among all subgraphs of G

- The peeling algorithm can be extended to find a k-approximate k-clique densest subgraph

- The Goldberg’s algorithm can be extended to find the k-clique densest subgraph exactly
Outline

- Background
- Core Decomposition
- Densest Subgraph Computation
- Higher-order Dense Subgraph Computation
- Future Directions
Future Directions

- How to do truss decomposition without hash tables?

- What is the relationship between dense subgraphs with different density (average degree) values?

- How to scale up nucleus decomposition and k-clique densest subgraphs for large k values?

- How to effectively and efficiently incorporate other information (such as attributes, temporal) into dense subgraph computation?
References

References (cont’)

References (cont’)

This book is considered the first extended survey on algorithms and techniques for efficient cohesive subgraph computation. With rapid development of information technology, huge volumes of graph data are accumulated. An availability of rich graph data not only brings great opportunities for realizing big values of data to serve key applications, but also brings great challenges in computation. Using a consistent terminology, the book gives an excellent introduction to the models and algorithms for the problem of cohesive subgraph computation. The materials of this book are well organized from introductory content to more advanced topics while also providing well-designed source codes for most algorithms described in the book.

This is a timely book for researchers who are interested in this topic and efficient data structure design for large sparse graph processing. It is also a guideline book for new researchers to get to know the area of cohesive subgraph computation.
Cohesive Subgraph Computation over Large Sparse Graphs

Authors (view affiliations)
Lijun Chang, Lu Qin

Book
292 Downloads

Part of the Springer Series in the Data Sciences book series (SSDS)

Slides: lijunchang.github.io/icde19_tutorial.pdf
PhD Recruitment at The University of Sydney

PhD Recruitment at The University of Sydney

Duration: 3 - 4 years

Scholarship:

- Stipend: $27,082
- Fee scholarship: $44,500

English requirement

- IELTS: overall 6.5, and section minimum 6

Lijun.Chang@sydney.edu.au

Lijun.Chang@sydney.edu.au